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ABSTRACT 
 
 

Leishmania amazonensis is an intracellular protozoal parasite that causes 

cutaneous leishmaniasis in humans and other mammalian hosts. This disease affects 

people within tropical and subtropical countries. Generally a Th1 cell-mediated host 

immune response is thought to be important for the clearance of the parasite. However, 

throughout this work we have shown that a productive B cell response is important for 

the clearance of the parasite through the production of IgG2a isotype antibodies. These 

antibodies can form small soluble immune complexes that can stimulate the FcγR 

leading to the production of superoxide. Superoxide and nitric oxide are required to kill 

intracellular L. amazonenesis parasites. Our studies have also shown that macrophages 

can be activated to produce these required immune factors if they are stimulated with 

soluble immune complexes, IFN-γ, and Leishmania antigen (tripartite activation). We 

have also found that these three factors can lead to the upregulation of the autophagy 

pathway for the clearance of the parasite. These soluble immune complexes can be 

replaced by novel recombinant proteins that have similar morphology to murine IgG2a 

Fc. These Fc constructs have the ability to recapitulate killing of the parasite and 

superoxide production seen with tripartite activation. All of these factors are important 

for the development of a possible immunomodulating therapy that could be used to treat 

patients infected with this chronic, debilitating disease. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Leishmaniasis – Introduction, History, Epidemiology: 

Leishmaniasis is a vector-borne disease caused by protozoan parasites of the 

Leishmania genus (Kinetoplastida: Trypanosomatidae). Leishmaniasis has been 

present in the human population as far back as humans were able to document 

its presence. Leishmania mitochondrial DNA has been isolated from mummies 

from Egypt and Sudan as early as 1500 BC and from America as early as 800 

BC, before the arrival of Europeans in America.1 In 1903, Leishmania was 

named after Dr. William Boog Leishman found characteristic bodies in the spleen 

of infected patients.2 Leishmaniasis also has several other names including: 

leishmanasis, leishmaniose, Oriental boils, Baghdad Boil, kala azar, black fever, 

sand fly disease, Dum-Dum fever, or espundia.3  

There are 30 different Leishmania species, approximately 20 of which 

have the potential to infect humans. Human infections are zoonotic; the result of 

a recent host transfer from a zoonotic source; or as occurs in urban areas, are 

anthroponotic. These protozoan parasites are transferred to the human by the 

bite of infected female phlebotomine sand flies.4 There are three main forms of 

the disease, including cutaneous, visceral, and mucocutaneous. These different 

forms of disease are caused by different Leishmania species.  

Leishmania species are divided into Old World and New World regarding 

their geographic location. The Old World (Eastern hemisphere) leishmaniasis 

include L. donovani, L. infantum, and L. major. The New World (Western 
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hemisphere) leishmaniases include L. chagasi (L. infantum), L. braziliensis and 

L. amazonensis.  

Leishmaniasis occurs in more than 90 countries in the tropics, subtropics, 

and southern Europe.5 There are approximately 310 million people at risk of 

infection with approximately 1 million cases of cutaneous leishmaniasis reported 

in the last five years and 300,000 cases of visceral leishmaniasis with more than 

20,000 deaths annually.4 Over 90% of visceral leishmaniases occur in six 

countries, including Bangladesh, Brazil, Ethiopia, India, South Sudan, and 

Sudan.  Most cases of cutaneous leishmaniasis occur in Afghanistan, Algeria, 

Brazil, Columbia, the Islamic Republic of Iran, Pakistan, Peru, Saudi Arabia, and 

the Syrian Arab Republic.  

Transmission 

Leishmaniasis is currently classified as a neglected tropical disease. Leishmania 

sp. are mainly transmitted by phlebotomine sand fly vectors between humans 

and other mammalian hosts, making transmission of the disease very difficult to 

control. Rarely within urban areas there is anthroponotic transmission of 

cutaneous and visceral leishmaniasis.  

L. amazonensis causes cutaneous leishmaniasis in the New World. 

Although it is not considered a frequent cause of New World cutaneous 

leishmaniasis, less than 3% of cases, it is a unique species that can lead to 

severe disease with an outcome of diffuse cutaneous leishmaniasis. Leishmania 

amazonensis is transmitted by sand flies that take a bloodmeal from an infected 

host and inject the infective metacyclic promastigotes into the skin of a human or 
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other mammal. The promastigotes then transform into amastigotes and multiply 

inside macrophages where another sand fly can later take up the infected cells, 

which transform from amastigotes to promastigotes within the midgut of the sand 

fly.5 (Figure 1) 

 

 

Figure 1. Life cycle of Leishmania, www.cdc.gov, accessed October 20, 2015. 
Leishmaniasis is transmitted by the bite of a sand fly. The sand fly takes a blood 
meal and injects the promastigote into the bloodstream. The promastigote is 
taken up by macrophages and transforms into amastigotes. Amastigotes 
replicate and reside within macrophages where they can be taken up by sand 
flies when they take a blood meal. In sand flies, amastigotes transform back to 
promastigotes within the sand fly hindgut. 
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Disease, Diagnosis, Treatment, Prognosis 

There are three main diseases in humans including: visceral leishmaniasis (VL), 

cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis. These three 

different forms of disease are caused by different species of Leishmania and the 

different host response to the parasite.  

Visceral leishmaniasis is the most severe form of disease. It is caused by 

L. donovani and L. infantum. The clinical symptoms associated with VL include 

fever, anemia, splenomegaly, hepatomegaly, and progressive cachexia. This 

disease occurs most frequently in immunosuppressed individuals, such as HIV 

infected patients. Other symptoms can include lymphadenopathy and persistent 

diarrhea. The prognosis of this disease is varied and spontaneous recovery can 

occur; although, full-blown disease (untreated) is fatal.6  

Cutaneous leishmaniasis is caused by L. major (Old World) or L. 

amazonensis and L. braziliensis (New World), along with many other species. 

The lesion associated with CL typically first appears as a persistent insect bite 

that gradually enlarges. The lesion can then become an open sore. Spontaneous 

resolution generally occurs, however the time for resolution varies depending on 

the species of the parasite and host response.6 Diffuse cutaneous leishmaniasis 

(DCL) is a manifestation of cutaneous leishmaniasis in which lesions may be 

restricted or widespread over the body and can be caused by L. amazonensis. 

DCL is generally restricted to Venezuela and the Dominican Republic in the 

western hemisphere. DCL occurs due to the lack of an effective host immune 

response and there are typically numerous parasites within lesions. 6   
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Mucocutaneous leishmaniasis occasionally occurs and is caused by L. 

braziliensis (New World). Mucocutaneous leishmaniasis occurs at or close to a 

mucosal surface after the bite of a sand fly. Classic mucocutaneous 

leishmaniasis occurs following the resolution of a cutaneous lesion. The clinical 

symptoms associated with this disease include destruction of mucosa and 

associated cartilage and the disfiguration of the face or affected surface.6  

Diagnosis of leishmaniasis can be difficult to achieve. It occurs mainly by 

clinical exam in endemic areas; however confirmation of the disease diagnosis 

can be established through the demonstration of amastigotes in infected tissues. 

This can be achieved by fine needle aspirates or tissue biopsies of bone marrow 

and spleen. Other assays have been developed for the diagnosis of 

leishmaniasis, including serology and PCR. Serologic assays are most 

commonly used for diagnosing visceral leishmaniasis and these assays include 

antigen-based direct agglutination tests and commercially available 

immunochromatographic dipstick tests. These tests have high sensitivity and 

specificity.7 Another assay that is occasionally used for the diagnosis of 

cutaneous leishmaniasis is the Montenegro skin test (MST). This test has high 

sensitivity and specificity, however it does not distinguish between past and 

present infections.7 PCR can also be used for the detection of Leishmania 

nucleic acids and allows for a very specific and sensitive result. This method can 

be used for the quantification of parasite load following treatment or to identify 

the Leishmania species causing the infection.7 In a clinical setting a combination 
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of these different diagnostic assays would be used to help confirm a diagnosis of 

leishmaniasis.  

There is currently no vaccine available for human leishmaniasis. Visceral 

leishmaniasis can be difficult to treat and is often fatal in full-blown infections. 

The traditional treatment of VL has been the use of pentavalent antimonials, 

however other treatments have also been developed. These treatments include 

amphotericin B, Paromomycin, and miltefosine. These drugs have both 

advantages and disadvantages, and none of them are 100% effective in parasite 

clearance. Several drugs have been implicated for oral treatment; some 

examples include allopurinol, azole drugs and miltefosine. The allopurinol and 

azole drugs have little evidence or scientific research to show clinical efficacy, 

therefore their use is not recommended.8 Miltefosine is another oral drug that has 

demonstrated good clinical efficacy of cure rates at approximately 85%. 

However, relapse 12 months following miltefosine treatment can be as high as 

20%. 

Parenteral treatments for leishmaniasis are also available and these 

include pentavalent antimonials, Amphotericin B deoxycholate, liposomal 

Amphoteracin B, Pentamidine, and Paromomycin. Pentavalent antimonials were 

considered the first line of treatment and have been used since the late 1940s 

although parasite resistance has development in certain geographic areas. 

Parasite resistance is particularly established in India where resistance rates are 

as high as 60%.8 Cure rates with pentavalent antimonials range from 80-100%. 

Cardiac toxicity with pentavalent antimonials can reach as high as 17% if 



www.manaraa.com

 

 

7

treatment regimens extend longer than 28 days.8 Amphotericin B deoxycholate 

and liposomal Amphotericin B are other first line drugs against leishmaniasis. 

These drugs are very effective and can have cure rates ranging from 95-100%, 

with little toxicity. Paromomycin is not recommended as a sole therapy against 

VL as cure rates were as low as <50% in one study.8  

These drugs have high rates of toxicity and variable efficacy. All of these 

treatments can have different beneficial aspects that allow for their preferential 

selection or a combination of different treatments within patients. Other factors 

also need to be considered when treating a patient, such as the development of 

parasite drug resistance, HIV-Leishmania co-infection, malnourishment, or other 

co-infections. 

Many cases of cutaneous leishmaniasis will spontaneously resolve 

regardless of the treatment. Cutaneous and mucocutaneous leishmaniasis 

treatments are often poorly justified and have limited effectiveness. Nevertheless, 

many treatment options are available including physical therapies, topical drug 

therapies, oral drug therapies, and parenteral drug therapies. The treatment 

chosen for patients with cutaneous and mucocutaneous leishmaniasis greatly 

depends on the species of Leishmania responsible for disease. Old World 

leishmaniases are more likely to spontaneously resolve than New World 

leishmaniases or mucocutaneous disease. These facts lead most physicians to 

treat Old World cutaneous lesions with physical therapies such as 

thermotherapy, cryotherapy, or CO2 laser treatment. For New World cutaneous 

leishmaniasis the preferred treatment is systemic therapy, however this includes 
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risky side effects and long treatment periods. In the case of cutaneous 

leishmaniasis caused by L. amazonensis and mucocutaneous leishmaniasis, 

pentavalent antimonials seem to be the best treatment option.9  

 More research is needed to develop better treatment options with less 

severe side effects and better efficacy. These treatments should also lead to 

quicker lesion resolution and prevent disfiguration. 

Murine cutaneous Leishmaniasis 

The mouse model is a very important tool for the study of the host immune 

response to Leishmania parasites. Both L. major and L. amazonensis cause 

cutaneous leishmaniasis in mice after experimental infection. Genetically 

susceptible and resistant strains of mice have been pivotal in understanding the 

immunopathogenesis of leishmaniasis. Depending on the mouse strain and the 

species of Leishmania some animals develop a lesion that heals after a variable 

amount of time while others may develop progressive lesions that eventually lead 

to the death of the animal.10 BALB/c mice develop uncontrolled disease when 

infected with either L. major or L. amazonensis and other mouse strains show 

various levels of susceptibility to these pathogens. C3H mice are able to heal 

infection with L. major but develop chronic disease when infected with L. 

amazonesis. C57BL/6 and C57BL/10 mice also heal L. major infections but 

develop chronic lesions that can metastasize when infected with L. 

amazonensis.10 The genetic predisposition for susceptibility to L. major infection 

in mice is determined by their dominance of a Th1 or Th2 phenotype driven by 

IFN-γ and IL-12 or IL-4 respectively.11 
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C3H mice that are coinfected with L. major and L. amazonensis or prior 

infection with L. major can confer protection against L. amazonesis.12 The 

outcome of the host immune response to Leishmania spp. are dependent upon 

the host immune response, nutritional status, and parasite species or strain.13 

Infection of mice with Leishmania major can lead to cutaneous leishmaniasis and 

healing of that infection requires the production of Th1 cytokines, the activation of 

macrophages, and the production of reactive oxygen species and reactive 

nitrogen intermediates, such as nitric oxide.14, 15 Alternatively, infection of mouse 

models with L. amazonensis can lead to non-healing cutaneous leishmaniasis, 

as these parasites are highly resistant to many neutrophil and macrophage 

derived leishmanicidial effector molecules.14, 15 The Leishmania immunology 

paradigm has been well described using the BALB/c mouse model and L. major 

infection. However, there are many complexities in the mechanisms responsible 

for immunity against these pathogens, along with significant species variation, 

therefore research is ongoing. 

 L. amazonensis is more difficult to eliminate and causes chronic infections 

in comparison to L. major. Our lab has shown that an impaired immune response 

to L. amazonensis may be a result of an impaired ability of immune cells to 

transition from a naïve to an effector phenotype. L. amazonensis infected 

dendritic cells have altered expression of surface markers, cytokine production, 

maturation, and function. These include significantly reduced CD40 surface 

expression and a decreased number of IL-12p40 producing cells within the 

draining lymph node of L. amazonensis infected mice.16 CD40L-/- are more 



www.manaraa.com

 

 

10

susceptible to L. amazonensis infection, suggesting the CD40-CD40L 

interactions are important for the generation of a host cellular immune 

response.17 Lipophosphoglycan (LPG) a glycolipid on the surface of Leishmania 

has been shown to activate extracellular signal-regulated kinases (ERKs), c-Jun 

N-terminal kinase (JNK), and the p38 MAP kinase, and both p38 and ERK 

appear necessary to induce IL-12 and nitric oxide production. Inhibiting the 

phosphorylation of ERK in vitro can result in recovering the DC phenotype 

resulting in an increase in IL-12 production.16 Some other parasite virulence 

factors include the modulation of TLR signaling, IFN-γR downregulation, and the 

induction of IL-10.18 All of these responses skew the host immune response to 

favor parasite survival. LPG on L. amazonensis can also affect host cell kinases 

and phosphatases. LPG can interfere with the binding of regulators such as Ca2+ 

and can block protein kinase C (PKC) membrane insertion and activation.19 The 

blockage of PKC can have a critical role in preventing superoxide production 

through the downstream effects of nicotinamide adenine dinucleotide phosphate 

(NADPH) complex assembly.19 There are multiple virulence factors that 

Leishmania uses to prevent a protective host immune response and to favor the 

intracellular survival and replication of amastigotes. As these parasite induced 

virulence factors are elucidated, the modulation of these specific signaling 

pathways may be effective in immunomodulatory treatments. This has the 

potential to lead to a decrease in intracellular parasite survival and replication. 
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The role of B cells in Leishmaniasis 

B cells are generally not given much attention in Leishmania infections, as the 

focus remains on the generation of a productive Th1 response with IFN-γ and IL-

12 for lesion resolution. However, our lab has shown that B cells may be playing 

a larger role in the host’s immune response to Leishmania than previously 

thought. Our lab has demonstrated that CD4+ T cells and B cells can limit L. 

amazonensis survival in macrophages in vitro, and this correlates with 

susceptibility to L. amazonensis infection by C57BL/6 mice, which have a 

deficiency in their B cell response.20, 21  

B cells develop from a single precursor bone marrow stem cell line and 

mature into many mature B-cell subsets, including memory B cells and plasma 

cells. B cell subpopulations are distinguished by their receptors and cell surface 

markers of activation or differentiation. The different B cell subsets include pro-B 

cells, pre-B cells, immature and transitional B cells, plasmablasts, and plasma 

cells.22  

B cells can be found throughout the body in a number of organs in a 

normal individual. These include in the bone marrow (precursors, plasma cells), 

blood (transitional, naïve mature, and memory B cells, plasmablasts, plasma 

cells), secondary lymphoid tissues (mature naïve, memory B cells). B cells 

subpopulations display many similar cell surface markers although some differ 

amongst populations. One example is the presence of CD27 as a marker of 

memory B cell populations. CD20 antigen is expressed on a majority of B cells, 

but not stem cells, pro-B cells, or terminally differentiated plasma cells.22 CD20 
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antigen is a transmembrane protein that is thought to be involved in the activation 

and proliferation of B cells. 

Described disorders of the B cell lineage mainly consist of neoplastic or 

autoimmune disorders. B cell lymphomas occur in humans and animals and 

consist mainly of follicular lymphoma, non-Hodgkin’s lymphoma, and chronic 

lymphocytic leukemia.22 Numerous autoimmune disorders are described 

throughout the literature. These diseases can occur through the production of 

autoantibodies by B cells or plasma cells. Some examples include rheumatoid 

arthritis, granulomatosis with polyangitis (GPA), and microscopic polyangitis 

(MPA). The use of antibodies against B cells was developed in the late 1980s 

and 1990s, where an antibody is used to deplete the specific cell type by 

antibody dependent cell-mediated cytotoxicity. Rituximab, an anti-CD20 

monoclonal antibody (Rituxan ©, Genentech, Biogen, IDEC) was first licensed for 

use in 1997 against follicular lymphoma and is now licensed for use against Non-

Hodgkin’s Lymphoma (NHL), Chronic Lymphocytic Leukemia (CLL), Rheumatoid 

Arthritis (RA), Granulomatosis with Polyangitis (GPA) (Wegener’s 

Granulomatosis), and Microscopic Polyangitis (MPA). Since that time other anti-

CD20 antibodies have been developed for use and include Ofatumumab, 

Ocrelizumab, Veltuzumab, AME-133v, PRO131921, or GA101.23  

 Anti-CD20 therapy has been successful in the depletion of B cells in 

humans and mice with very few reported side effects. Different subpopulations of 

B cells along with the location of the B cell population yield different responses to 

the anti-CD20 therapy. B cells within the peripheral blood are most susceptible to 
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anti-CD20 depletion therapy and many studies report a depletion efficiency of 

99% or higher.22 Populations that are more resistant to therapy include peritoneal 

B1-type B cells, germinal center B cells, and marginal zone B cells.22, 24 These 

differing sensitivities may be due to the inefficiency of effector cells at getting to 

these locations or to a defect in antibody-dependent cellular cytotoxicity. For 

example, the FcR is important in B cell depletion and polymorphisms of this 

receptor can effect the efficiency of anti-CD20 therapy.25 Some suggest that 

higher doses of antibodies are needed to deplete B cell populations in bone 

marrow, spleen, and lymph nodes in successive order.22 Depletion of solid 

organs is often not complete.  

 Despite relatively high depletion of B cells following anti-CD20 therapy 

there are relatively few studies demonstrating an increased susceptibility to 

infections. Patients receiving rituximab therapy will be immunosuppressed and 

may be more susceptible to chronic infections such as leishmaniasis. Many 

clinical trials have conflicting results regarding the association of anti-CD20 

therapy and infections. One study has shown an increased incidence of 

infections of patients with lymphoma and rheumatoid arthritis receiving 

rituximab.26 A review of recent data showed that rituximab therapy significantly 

increased the risk of infection in patients with lymphoma or other hematological 

malignancies; however, this increased risk of infection was comparable to other 

concurrent treatments in patients with rheumatoid arthritis.27 Patients receiving 

rituximab therapy will be immunosuppressed and may be more susceptible to 

chronic infections such as leishmaniasis. 
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 Patients receiving B cell depletion therapy will repopulate their B cells 

within 6 to 9 months following therapy. This is through the production of naïve B 

cells from the bone marrow stem cells, which then repopulate the peripheral 

blood and secondary lymphoid organs. Plasma cells are often long lived and are 

not affected by anti-CD20 therapy, however the production of new plasmablasts 

and plasma cells will be delayed.  

  

Macrophages 

Macrophages are important immune cells derived from bone marrow monocytes 

that are integral in bridging innate and acquired immune responses. 

Macrophages are phagocytic cells that can travel to the lymph node and present 

antigen to T cells. Macrophages have numerous receptors that allow them to 

phagocytize foreign antigens. The receptors that are reported to play a role in the 

uptake of Leishmania include the third complement receptor (CR3), first 

complement receptor (CR1), mannose receptor (MR), Fc gamma receptors 

(FcγRs, in particular FcγRII), and fibronectin receptors (FnRs).28 

Macrophages have many roles as a part of the innate immune system. 

These roles include recognition and phagocytosis of foreign antigens along with 

different mechanisms employed to ingest those foreign substances. Some ways 

that macrophages kill phagocytized microorganisms include through the acidic 

environment of the lysosome, production of nitric oxide, and superoxide. 

Macrophages follow two main phenotypes, M1 and M2. M1 macrophages are 

characterized by the production of reactive oxygen and nitrogen species, 
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whereas M2 macrophages are characterized by their anti-inflammatory and 

wound repair properties. For the extent of this review we will focus on M1 

macrophage phenotype.29 These macrophages are stimulated by IFN-γ and play 

an important role in innate immunity.  

It is generally accepted that a protective immune response against 

Leishmania is dependent upon the induction of a CD4+ Th1 response.30 CD4+ 

Th1 T cells produce IFN-γ that activates macrophages to kill intracellular 

parasites. IFN-γ induces macrophages to synthesize nitric oxide as well as 

superoxide. Nitric oxide has been shown to play an important role in antimicrobial 

functions and has been shown to be a critical molecule in the parasitical function 

against Leishmania major 31 and has been shown to limit growth of Leishmania 

within infected macrophages.30 Nitric oxide is generated from L-arginine by the 

enzyme NO synthase (NOS).32 There are three forms of NOS, including 

inducible, neuronal, and endothelial. Inducible NOS (iNOS) is induced by the 

presence of cytokines activating neutrophils, macrophages, and other white 

blood cells.33  

The production of reactive oxygen species has also been shown to play 

an important role in the clearance of Leishmania amazonensis.30 The production 

of ROIs is initiated by NADPH oxidase. NADPH oxidase is activated when the 

cytosolic proteins (gp40phox, gp47phox, gp67phox, and Rac2) translocate to and 

interact with the membrane bound proteins (gp91phox, gp22phox, Rap1a) to 

make the active NADPH oxidase. NADPH oxidase produces superoxide, which is 
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used to control intracellular microbes.34 NADPH oxidase can be activated by IFN-

γ, IL-8, or by IgG binding to Fc-receptors or microbial products (such as LPS).34 

Leishmania exhibits many virulence factors that allow it to modulate the 

host immune response in order to ensure its survival. These include modulating 

receptor responsiveness in macrophages and altering host cell kinases and 

phosphatases. Some receptors on the surface of the macrophage that are 

affected by Leishmania include CD40, TLRs, IFN-γ, and IL-10 receptors. Several 

studies have shown that Leishmania-infected macrophages have MAPKs that 

are repressed, causing a decrease in IL-12 and iNOS2 production.35 Parasite 

LPG has been implicated in the inactivation of MAPKs.35 Our lab has also shown 

that L. amazonensis amastigotes inhibited the ability of DCs to undergo proper 

maturation.16 TLRs are thought to be modulated by Leishmania either through 

the suppression of TLR 2, 4, 9, or the adaptor protein MyD88. TLR 4 deficient 

mice had impaired resistance to L. major and TLR9 signaling is suppressed by L. 

major infection. The modulation of TLRs or other pattern recognition receptors 

would lead to a decrease in the cytokines (such as IL-12) produced along with a 

decrease in the induction of iNOS expression.35 Leishmania can also inhibit IFN-

γ receptor signaling through the inhibition of the JAK2/STAT1 pathway. The 

suppression of IFN-γ receptor pathways leads to a decrease in nitric oxide 

production and a decrease in MHC class II expression. Finally, host IgG present 

on the surface of Leishmania amastigotes can interact with the FcγR on the 

surface of the macrophage leading to the induction of IL-10, a potent 

immunosuppressant.19  
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Leishmania LPG has been shown to inhibit protein kinase C activation and 

subsequent intracellular signaling. Leishmania also activate phosphoinositide-3-

kinase (PI3K) signaling, which has been shown to negatively regulate IL-12 

production. In conclusion, there are many ways that Leishmania has evolved to 

use the host cell molecules to its advantage to allow for its intracellular survival. 

 

Fcγ Receptors 

Antibody Fc (Fragment crystallizable) receptors, found on many cell surfaces, 

that mediates binding of immunoglobulin, can induce a variety of immune 

functions by regulating intracellular signaling. Antibody Fc receptors (FcR) are 

named by their ability to bind specific immunoglobulin subtypes. FcγRI (CD64) 

resides on the surface of monocytes and macrophages, and binds the Fc portion 

of IgG1 or IgG2a in humans or mice, respectively, with high affinity. The main 

immune functions of Fc receptor engagement are facilitation of phagocytosis, 

antibody-dependent cell-mediated cytotoxicity (ADCC), induction of the release 

of inflammatory mediators, and the regulation of lymphocyte proliferation and 

differentiation.36 Given their wide array of functions in modulating the immune 

response, new and promising strategies are unfolding for developing molecules 

that are able to mimic the FcR-Ig interaction to exploit immunoregulation.37  

Cell surface expression of FcγRI can be induced by IFNγ. FcγRI can bind 

monomeric IgG and take it up via endocytosis, however this generally leads to a 

recycling pathway unless the receptor is cross-linked with multivalent IgG 

complexes.38 Cross-linked receptors lead to internalization of the antigen-
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antibody complex and activation of the cell to produce effector functions, such as 

superoxide production.39 Phagocytosis of the antigen-antibody complex by 

macrophages results in a pro-inflammatory response and the production of 

superoxide within the phagosome.40 However, the size of the immune complex 

(IC) binding FcγRI affects the signaling pathway that ensues.40 FcγRI signals 

through a common γ chain and activates the proto-oncogene tyrosine-protein 

kinase (SRC) family of kinases, spleen tyrosine kinase (SYK), and has been 

shown to induce superoxide production when bound by large insoluble IC.41 

However, when small soluble ICs bind the FcγRI they are internalized by 

endocytic pathways, leading to other functions, such as receptor expression, 

regulation of signal transduction, antigen presentation, and recycling of those 

receptors.42 Other studies have shown that these small soluble ICs can also 

induce superoxide production upon cross-linking of the FcγRI.43, 44 Further work 

is needed to elucidate how clustering of this single receptor can lead to different 

immune functions at the molecular level. The ability to manipulate these 

receptors in order to get a timely and localized release of inflammatory mediators 

can be helpful in inducing an effective immune response against intracellular 

pathogens.43, 44  

 

Autophagy 

Autophagy is an intracellular homeostatic mechanism important for the 

degradation of cytosolic components that range in size from single proteins to 

entire organelles via autodigestion through the lysosomal pathway. Multiple 
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autophagic pathways exist in mammalian species. Autophagy plays a role in cell 

survival throughout health and disease including, aging, cancer, 

neurodegenerative diseases, immunity, infectious diseases, and chronic 

inflammatory conditions.45  

The process of canonical macroautophagy can be broken down into four 

discrete steps: induction, formation of the autophagosome, autophagosome 

docking and fusion with the lysosome or vacuole, and autophagic body 

breakdown.46 Canonical autophagy can be induced through nutrient deprivation 

or the inhibition of the phosphorylation of mTOR (mammalian target of 

rapamycin), such as occurs with Rapamycin.46 The initiation of autophagy is 

dependent on the ULK1 complex. Next, a double membrane vesicle begins to 

form in the cytosol, resulting in the sequestration of cytoplasmic components. 

This process is highly regulated under the control of GTPases, class III 

phosphatidylinositol-3-kinases (class III PI3K), and various phosphatases.46 

Fusion of the autophagosome with the lysosome depends on microtubules and 

vacuolar protein sorting (Vps) protein complex which function to ensure efficient 

fusion of the autophagosome with the vacuole.46 Autophagosomes can be 

recognized by their microtubule associated protein 1A/1B light chain protein 3 

(LC3), which is conjugated with phosphotidylethanolamine (PE) to form LC3II. 

LC3II facilitates the formation of the double-membrane autophagosome; which 

fuses with a late endosome or lysosome to form the autolysosome.47 Fusion 

causes the release of the single-membrane bound inner vesicle of the 

autophagosome, into the vacuole lumen and the autophagic body is broken 
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down.46 Xenophagy is another type of canonical autophagy that targets bacteria 

for clearance by autophagy.  

Non-canonical autophagy occurs without the formation of a double 

membrane and can lead to autophagosomal degradation through different 

variations of the autophagy pathway.48 These pathways are triggered by several 

cell surface receptors and can be involved in a form of selective autophagy. One 

pathway is known as LC3-associated phagocytosis (LAP), which links signaling 

during phagocytosis with recruitment of phagocytosis machinery.49 The 

recruitment of LC3II to the phagosome is preceded by class III PI3K activity, 

similar to canonical autophagy.50 LAP focuses on extracellular pathogen 

degradation within a phagosome, whereas canonical autophagy targets bacteria, 

parasites, and viruses (xenophagy) that either disable the phagosome or that 

escape into the cytosol.50 Both non-canonical and canonical autophagy play 

complementary functions in immunity, and are important in modulating 

inflammatory pathways.50 Others have also found that this pathway may occur 

through other pathways that do not involve PI3K, such as diacylglycerol 

dependent PKCδ activation.51 

Autophagy has been shown to play a role in innate immunity and can be 

activated through numerous pattern recognition receptors to participate in the 

elimination of microorganisms. Inflammatory cytokines can also be involved in 

the activation of autophagy. IFN-γ may activate autophagy through the function 

of immunity-related GTPases and through the phosphorylation of beclin 1 by 

death-associated protein kinase 1 (DAPK1).52 The signaling mechanisms that 
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autophagy uses for selective degradation of intracellular microorganisms are 

largely undetermined and more research is needed to elucidate the specific 

signaling pathways. However, it appears that lipid second messengers and 

phosphatidylinositol 3-phophate (PI3P) are required for autophagy.53  

Infection with intracellular Leishmania amazonensis, can be a chronic 

debilitating disease in humans. There are currently no vaccines available and 

treatment modalities are often harsh. A productive antibody response is 

important in clearing an infection with L. amazonensis, in our in vivo and in vitro 

models of disease. Modulation of the host immune response for clearance of the 

intracellular parasites may be a possible host-direct immunotherapy. Activating 

macrophages to produce the necessary immune factors to kill the intracellular 

parasite may be a new treatment option that would allow for clearance of the 

parasite after infection without deleterious side effects. The ability to decrease an 

infection with L. amazonensis requires superoxide production within 

macrophages, which appears to be linked to the autophagy pathway to parasites 

for subsequent killing, similar to other intracellular pathogens.   
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Abstract 

Anti-CD20 depletion therapies targeting B cells are commonly used in malignant 

B cell disease and autoimmune diseases. There are concerns about the ability of 

B cells to respond to infectious diseases acquired either before or after B cell 

depletion. There is evidence that the B cell response to existing or acquired viral 

infections is compromised during treatment, as well as the antibody response to 

vaccination. Our laboratory has an experimental system using co-infection of 

C3H mice with both Leishmania major and Leishmania amazonensis that 

suggests that the B cell response is important to healing infected mice. We 

tested if anti-CD20 treatment would completely restrict the B cell response to 

these intracellular pathogens. Infected mice that received anti-CD20 B cell 

depletion therapy had a significant decrease in CD19+ cells within their lymph 

nodes and spleens. However, splenic B cells were detected in depleted mice and 

an antigen-specific antibody response was produced. These results indicate that 

an antigen-specific B cell response towards intracellular pathogens can be 

generated during anti-CD20 depletion therapy. 

 

Keywords: B cell, CD20, Leishmania, immunohistochemistry 
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Introduction 

CD20 is a B-cell specific antigen that is expressed solely on B cells but not 

on early progenitor B cells. CD20 is present on the B cell from the pre-B cell 

stage until the mature B cell stage and is excluded on plasmablasts and plasma 

cells. CD20 is thought to be involved in B cell activation and differentiation.1, 2 

Antibodies against CD20 were developed in the late 1980s and 1990s for the 

treatment of follicular lymphoma, non-Hodgkin’s lymphoma, and cancers of the 

B-cell lineage.3 Rituximab, an anti-CD20 monoclonal antibody (Rituxan©, 

Genentech, Biogen IDEC), was first licensed for use in 1997 against follicular 

lymphoma and is now licensed for use against Non-Hodgkin’s Lymphoma (NHL), 

Chronic Lymphocytic Leukemia (CLL), Rheumatoid Arthritis (RA), 

Granulomatosis with Polyangitis (GPA or Wegener’s Granulomatosis), and 

Microscopic Polyangitis (MPA). Other anti-CD20 mAbs have also been 

developed, including Ofatumumab, Ocrelizumab, Veltuzumab, AME-133v, 

PRO131921, and GA101.3 Anti-CD20 monoclonal antibodies are most commonly 

used in therapies against lymphoma and autoimmune disorders, often in 

combination with other immunosuppressive agents. Infections are among the 

most important causes of morbidity and mortality in patients suffering from 

cancer; however, there is a lack of research on the immunosuppression that anti-

CD20 therapies may provoke and whether these therapies may exacerbate these 

secondary infections.4 
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Although anti-CD20 therapies have a proven efficacy and safety, the 

question remains as to whether these therapies lead to an increased 

susceptibility to numerous infections. Many clinical trials have conflicting results 

regarding the association of anti-CD20 therapy and infections; however, one 

study has shown an increased incidence of infections in patients with lymphomas 

and rheumatoid arthritis receiving rituximab.5 A review of recent data showed that 

rituximab therapy significantly increases the risk of infection in patients with 

lymphoma or other hematological malignancies; however, this increased risk of 

infection was comparable to other treatments used in patients with rheumatoid 

arthritis.6 Often, patients receiving anti-CD20 therapies have other complicating 

factors including other active infections.6 Studies have shown that although anti-

CD20 therapies induce B-cell depletion for 6 to 9 months, their immunoglobulin 

levels do not decrease.7 This phenomenon may be due to the presence of long-

lived plasma cells. Plasma cells can survive for periods greater than 1 year, even 

in the absence of a memory B cell population.8 Therefore, most patients 

receiving B-cell depletion therapy do not have an increase in the number of 

infectious complications.7 Other studies have shown that patients receiving anti-

CD20 therapy have an impaired humoral immune response to a primary antigen 

but not to a recall antigen.7, 9, 10 Although these studies show an impaired 

humoral immune response, many patients receiving anti-CD20 therapy still 

produced a measurable antibody response to vaccination and approximately 

20% of the patients were seroprotected.9 Nothing is known about the antibody 

response towards intracellular pathogens during anti-CD20 treatment. Although it 
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is often thought that humoral immunity is, at best, inconsequential towards 

intracellular pathogens or, at worst, detrimental to immune control of intracellular 

pathogens there is emerging evidence that antibodies can play a role in the 

protective response to infection with intracellular pathogens.11, 12, 13, 14 

Leishmaniasis is a commonly used immunologic model of chronic 

infectious disease. Leishmania species are obligate intracellular protozoan 

parasites transmitted by the bite of a sand fly. L. major and L. amazonensis 

cause cutaneous leishmaniasis in many mammalian species, and L. 

amazonensis can lead to non-healing lesions.15 Leishmaniasis is prevalent in 98 

countries in the tropics and subtropics and is considered a neglected tropical 

disease. Multiple mouse models of leishmaniasis are commonly used to study 

host-pathogen dynamics. C3HeB/FeJ (C3H) mice infected with L. major will 

resolve cutaneous lesions within 8 to 12 weeks whereas the same mouse strain 

infected with L. amazonensis develops non-healing cutaneous lesions. However, 

mice co-infected with L. major and L. amazonensis resolve their lesions. Our lab 

has discovered that CD4+ T cells and CD19+ B cells from L. major-infected C3H 

mice are necessary to kill L. amazonensis within infected macrophages in an in 

vitro assay.12, 16, 17 We wanted to test the ability of anti-CD20 administration to 

prevent a detectable Leishmania-specific B cell response to determine if we 

could use this model in our experimental system. Treatment with monoclonal 

anti-CD20 antibodies have been associated with approximately 99% depletion of 

normal B cells in peripheral blood18. However, we show that C3H mice co-

infected with L. major and L. amazonensis and treated with anti-CD20 mAb still 
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have a B cell response to these intracellular parasites. Although the depleted 

mice had significantly less CD19+ cells in the lymph nodes and spleen they still 

had some germinal center formation and detectable antibodies via 

immunoblotting. In this report we determine the ability of the mouse to mount an 

effective immune response to an intracellular infection during monoclonal anti-

CD20 treatments. 

 

Materials and Methods 

Mice 

C3HeB/FeJ (C3H) mice (8-10 weeks of age) were obtained from an in-house 

breeding colony and maintained in a specific pathogen-free facility. Mice were 

infected with either 5 x 106 stationary phase L. major, 5 x 106 stationary phase L. 

amazonensis or 2.5 x 106 L. major (LM) and 2.5 x 106 L. amazonensis (LA) 

promastigotes in 50 μL of PBS in the left hind footpad. In the first experiment 

there were a total of 25 mice with 5 mice per treatment group: 1) LA infected 

mice 2) LM infected mice 3) LM infected and anti-CD20 treated 4) co-infected, 

and 5) co-infected and anti-CD20 treated. In the second experiment there were 

20 mice total with 5 mice per treatment group: 1) uninfected 2) uninfected and 

anti-CD20 treated 3) co-infected and 4) co-infected and anti-CD20 treated. All 

procedures involving animals were approved by the Institutional Animal Care and 

Use Committee at Iowa State University. Lesion size was monitored and the 

results were expressed as the difference between the footpad thickness for the 

uninfected foot and the footpad thickness for the infected foot. 
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B-cell depletion 

Mice were given intravenous injections of 200 μg anti-CD20 mAb (IgG1) provided 

by Biogen IDEC (Cambridge, MA) or 200ug of IgG1 isotype control (BioXcell, 

West Lebanon, NH) two weeks post-infection. Mice were then given 

intraperitoneal injections of anti-CD20 mAb or IgG1 isotype control every 2 

weeks for a total of 3 treatments.19  

 

Parasites and Antigens 

L. amazonensis (MHOM/BR/00/LTB0016) and L. major (MHOM/IL/80/Friedlin) 

promastigotes were grown in complete Grace’s medium (Atlanta Biologicals, 

Lawrencville, GA) to stationary phase, harvested, washed in endotoxin free PBS 

(Cellgro, Herdon, VA) and prepared to a concentration of 1 x 108 parasites/ml. 

Freeze-thawed Leishmania antigen was obtained from stationary phase 

promastigotes as previously described.20  

 

Flow Cytometry 

For flow cytometry analysis of surface molecule expression, 1 x 10
6 total draining 

lymph node cells or splenocytes were washed in 2 ml of fluorescence-activated 

cell sorting buffer (FACS, 0.1% sodium azide and 0.1% bovine serum albumin in 

phosphate buffer saline). Fcγ receptors were blocked with 10% purified rat anti-

mouse CD16/CD32 antibody (BD Pharmingen, San Diego, CA) in 1 mg/ml rat 

IgG for 20 minutes at 4°C to prevent non-specific binding. Cells were then 
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incubated with the appropriate antibody or isotype control for 30 minutes on ice in 

the dark. The antibodies used include phycoerythrin-labeled CD19 and 

phycoerythrin-labeled rat IgG2a isotype control. Antibodies were purchased from 

BD Pharmingen (San Diego, CA). Following staining, cells were washed in 2 ml 

of FACS buffer and fixed in 200 μl of 1% paraformaldehyde and stored at 4°C 

until analysis. Analysis was performed on a BD FACScanto flow cytometer 

(Becton Dickinson, San Jose, CA), and data analyzed using FlowJo software 

(Tree Star, Inc., Ashland, OR). 

 

Lymph node and Spleen Histopathology and Immunohistochemistry 

Spleens and popliteal lymph nodes from the left hind leg draining the site of 

infection were harvested and placed in cassettes in 10% neutral buffered 

formalin for histological and immunohistochemical analyses. Histological 

examination was performed on paraffin-embedded tissues cut at 5-μm thickness 

onto positively charged slides and stained with H&E. For immunohistochemistry, 

slides were de-paraffinized and blocked with 20% normal rabbit serum. The 

sections were then incubated with either a rat anti-mouse B220/CD45R antibody 

(BD Harlingen, San Diego, CA) at a concentration of 1:50 or biotin-labeled PNA 

(Vector Laboratories, Burlingame, CA) at a concentration of 1:100 in 10% normal 

rabbit serum. The slides were rinsed with PBS and then incubated with biotin-

labeled goat anti-rat IgG (KPL, Gaithersburg, MD) at a concentration of 1:500 in 

TBS for the B220/CD45R labeled slides. Slides were washed and incubated with 

peroxidase-conjugated streptavidin (BioGenex, San Ramon, CA) for 15 minutes. 
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After 2 PBS washes, the color was developed with Nova Red (KPL, 

Gaithersburg, MD). The slides were then counterstained with Harris’ hematoxylin, 

then dehydrated and mounted with coverslips.  

 

Immunoblot Analysis 

Protein content of all cell extracts was determined via BCA protein assay (Pierce, 

Rockford, IL) according to manufacturer’s recommendations, and all samples 

were normalized to 2 mg/ml using distilled water. Samples (20 to 30 μg of 

protein) were heated for 4 minutes at 95°C in 4x loading buffer and 

electrophoresis was performed on a 12% SDS-polyacrylamide electrophoresis 

gel. Gels were transferred onto polyvinylidene fluoride membranes, blocked with 

5% dry milk, and probed with pooled serum from mice. Signals were detected 

with horseradish-peroxidase-conjugated goat anti-rabbit antibodies (1:20,000) 

(Jackson ImmunoResearch, West Grove, PA) using the SuperSignal West 

chemiluminescent substrate (Pierce, Rockford, IL) and signal was detected with 

radiography film (Midsci, St. Louis, MO).  

 

Statistics 

Statistical analysis was performed with Prism5 (Graph-Pad Software Inc., La 

Jolla, CA). Differences between groups were determined using unpaired t-tests 

or a Mann-Whitney U-test when appropriate. P values <0.05 were considered 

statistically significant. 
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Results 

C3H mice co-infected with L. major and L. amazonensis resolve cutaneous 

lesions following B cell depletion 

We have previously demonstrated that C3H mice will heal a co-infection with L. 

major and L. amazonensis by 10 to 12 weeks post-infection.11 However, we have 

also shown that a productive B cell response correlates with healing a co-

infection with L. major and L. amazonensis.12 We tested the hypothesis that anti-

CD20 treatment would eliminate a B cell response to infection with these 

intracellular parasites. We infected mice with L. major and L. amazonensis and at 

2 weeks post-infection, began administration of B cell depletion therapies, as 

described above. We observed no significant differences in the kinetics of lesion 

development between co-infected mice that received the anti-CD20 or isotype 

control treatment throughout the time course of the study (Figure 1). In addition, 

lesion development in the co-infected groups was similar to the kinetics of lesion 

development in L. major-infected mice treated with anti-CD20 or isotype control 

antibodies (data not shown). Altogether, these data indicate that B cell depletion 

had no effect on lesion development of either co-infected or L. major-infected 

mice.  
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Figure 1. Co-infection of C3HeB/FeJ (C3H) mice with Leishmania major (LM) and 
L. amazonensis (LA) allows for lesion resolution by 10 weeks post-infection 
irrespective of B cell depletion therapy. Mice were inoculated with LA and LM 
stationary phase promastigotes in the left hind footpad. Mice were then treated 
with anti-CD20 or an isotype control at two weeks post infection and every two 
weeks until the end of study. Data are representative of two separate 
experiments. 

 

CD20 depleted C3HeB/FeJ mice have significantly fewer CD19+ cells 

present in draining lymph nodes and spleens 

In order to determine how the anti-CD20 antibody treatment affected B cells, we 

analyzed draining lymph node and spleen cell homogenates at 10 weeks post-

infection by flow cytometry with anti-CD19 to identify B cells. We used anti-CD19 

instead of anti-CD20 or anti-B220 to avoid antibody interference and to allow us 

to differentiate B cells from plasmacytoid dendritic cells, which also express 
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B220.21 CD19, in conjunction with CD21 and CD81, is part of the B cell co-

receptor.22 CD19, like CD20 is present on B cells throughout the developmental 

stages, excluding plasmablasts and plasma cells. 23 At 10 weeks the percentage 

of CD19+ B cells from the draining lymph nodes or spleen of anti-CD20-treated 

mice was significantly less as compared to isotype-treated mice (Figure 2A and 

2B). Overall, the percentage of CD19+ B cells in the spleen and draining lymph 

node of isotype-treated mice were similar, 40% and 50% respectively. However, 

post-treatment, we observed a 97.5% reduction of CD19+ B cells in the draining 

lymph node of anti-CD20 treated mice, but only an 80% reduction in the 

percentage of CD19+ B cells in the spleen of treated mice (Figure 2A and B). 

These data would suggest that anti-CD20 antibody treatment differentially affects 

B cell depletion, with the spleen being less affected by the treatment. Similar 

results were found in L. major infected mice with more depletion in the lymph 

nodes as compared to the spleen (data not shown).  

To further assess the B cell response, we also compared total lymphocyte 

counts from lymph nodes and spleens of co-infected mice with and without anti-

CD20 treatment. Co-infected mice treated with anti-CD20 had significantly less 

lymph node cells and splenocytes compared to the isotype controls (Figure 2C). 

This was also true for L. major-infected mice treated with anti-CD20 (data not 

shown).   
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Figure 2. Mice co-infected with Leishmania major (LM) and L. amazonensis (LA) 
that received anti-CD20 monoclonal antibody therapy had significantly less 
CD19+ cells and significantly fewer total lymphocytes within the draining lymph 
nodes as compared to the isotype control. Total draining lymph node cells and 
splenocytes were harvested at 10 weeks post-infection. Cells were analyzed via 
surface expression of CD19. (A, B, C). Data are the mean +/- SEM of two 
separate experiments. A, B *P<0.0001, C *P=0.0048 (t-test). 
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C3HeB/FeJ mice depleted with anti-CD20 have smaller lymph nodes and 

altered lymph node histomorphology 

Next we characterized the histomorphology of draining lymph nodes and spleens 

from anti-CD20 and isotype control-treated mice 10 weeks post-infection with L. 

major and L. amazonensis. Lymph nodes from co-infected mice had reactive 

lymphoid hyperplasia with a sinus histiocytosis. There was diffuse expansion of 

the cortex due to marked proliferation of lymphocytes within the paracortex, 

follicles, and medullary cords. There was also hypercellularity of the medullary 

sinuses composed of infiltrates of inflammatory cells consisting mainly of 

macrophages with fewer lymphocytes, plasma cells, and neutrophils (Figure 3).  

 Draining lymph nodes from anti-CD20 treated mice were significantly 

smaller as compared to the isotype-treated controls (Figure 3). Anti-CD20 

treatment also resulted in a loss of normal lymph node architecture and a lack of 

follicular organization. There was accentuation of the lymph node stroma, 

including numerous fibroblasts and adipose cells admixed with lymphocytes, 

plasma cells, and fewer neutrophils (Figure 3).  
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Figure 3. Mice co-infected with Leishmania major (LM) and L. amazonensis (LA) 
that received anti-CD20 monoclonal antibody therapy had immunopathology and 
significantly smaller draining lymph nodes. Draining lymph nodes and spleens 
were harvested at 10 weeks post-infection and placed in 10% neutral buffered 
formalin. Histological examination was performed on paraffin-embedded tissues 
cut at 5-μm thickness onto positively charged slides and stained with H&E. Co-
infected mice that did not receive anti-CD20 had a reactive lymphoid hyperplasia 
with a sinus histiocytosis (A). Co-infected mice that received anti-CD20 treatment 
had small lymph nodes with accentuation of the stromal fibroblasts and adipose 
cells (*) (B). The lymph node size was measured using CellSens Standard 1.9 
(Olympus) (C). Data are the mean +/- SEM of two separate experiments. 
*P=0.0003 (t-test).  
 

C3HeB/FeJ mice depleted with anti-CD20 have significantly less 

B220/CD45R positive immunostaining and a significant difference in the 

number of germinal centers in the draining lymph node 
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Anti-B220/CD45R and biotin peanut agglutinin (PNA) immunohistochemistries 

were performed to compare B cell populations and germinal center formation, 

respectively between the B cell depleted and isotype-treated groups of co-

infected mice. Mice that were B cell depleted had significantly less B220/CD45R 

immunostaining as compared to the isotype-treated groups (Figure 4). 

B220/CD45R is predominantly expressed on all B lymphocytes, including pro, 

mature, and activated B cells, and most B220+ cells are also CD19+.  

 

Figure 4. Mice co-infected with Leishmania major (LM) and L. amazonensis (LA) 
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that received anti-CD20 therapy had significantly less immunostaining for 
B220/CD45R. Co-infected mice that did not receive anti-CD20 treatment had 
significantly more B220+ immunostaining in both the draining lymph node (A, C) 
and spleen  (D). Co-infected mice that received anti-CD20 treatment had very 
little positive immunostaining for B220/CD45R (B). Data are representative of two 
separate experiments +/- SEM. *P<0.0001 (t-test). 

 

Biotin peanut agglutinin (PNA) is generally used to identify mature 

lymphocytes in germinal centers. The germinal center score was significantly 

different between the isotype control and anti-CD20 treated draining lymph 

nodes. There were few small PNA positive germinal centers throughout the 

isotype control (Figure 5A), but no germinal centers were seen in the anti-CD20 

treated draining lymph nodes (Figure 5B). However, there were no significant 

differences in the germinal center scores of the spleens between co-infected 

mice that had been treated with anti-CD20 or an isotype-control antibody. There 

were very low numbers of germinal centers in the isotype control spleens at 10 

weeks post-infection, despite finding only one germinal center in an anti-CD20 

treated mouse spleen.  



www.manaraa.com

 

 

44

 

Figure 5. Mice co-infected with Leishmania major (LM) and L. amazonensis (LA) 
that received anti-CD20 therapy had a significant decrease in the number of 
germinal centers in the draining lymph nodes but not the spleen. 
Photomicrographs of biotin peanut agglutinin (PNA) staining highlights a germinal 
center (A, inset) within a control mouse compared to negative immunostaining 
within a B-cell depleted lymph node (B, inset). Histological germinal center 
scores for PNA immunoreactivity were performed at 10 weeks post-infection. 
Score is based on the number of PNA+ germinal centers within the tissue section 
of a single draining lymph node. Data are representative of two separate 
experiments +/- SEM. *P=0.0400 (C), P=0.930 (D) (Mann-Whitney U test). 
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C3HeB/FeJ mice treated with anti-CD20 mAb produce a specific antibody 

response 

Based on our data thus far, anti-CD20 treatment resulted in depletion of B cells 

from both the draining lymph node and spleen, with the spleen containing readily 

detectable populations of B cells and a rare germinal center. We hypothesized 

that perhaps, despite the observed B cell depletion, there was still a detectable 

antigen-specific antibody response. In order to test this, we performed an 

immunoblot with serum collected from the co-infected mice treated with anti-

CD20 or isotype control antibody, at 10 weeks post-infection. The immunoblot 

was performed for total IgG, IgG2a, and IgG1. The depleted mice still produced 

L. major and L. amazonensis specific antibodies (Figure 6). 

 

 

Figure 6. Co-infected mice treated with anti-CD20 still produce parasite-specific 
antibodies. Western blot analysis of parasite-specific production of total IgG and 
isotypes IgG1 and IgG2a were performed at 10 weeks post-infection. Freeze-
thawed Leishmania major (LM) and L. amazonensis (LA) antigen were separated 
on a polyacrylamide gel and protein was transferred to a polyvinylidene fluoride 
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(PVDF) membrane. The blots were subsequently hybridized with mouse serum 
(1:25 dilution) pooled from 5 C3H control mice and 5 C3H B-cell depleted mice 
that were co-infected with L. major (LM) and L. amazonensis (LA). Following 
serum hybridization the membranes were probed with goat anti-mouse 
antibodies to total IgG, IgG1, or IgG2a. Results are from one experiment at 10 
weeks post-infection. 
 

Discussion 

The work presented in this manuscript demonstrates that mice co-infected with L. 

major and L. amazonensis followed by treatment with monoclonal anti-CD20 

antibodies resolved cutaneous lesions with normal kinetics (Figure 1). Anti-CD20 

antibody treatment resulted in a 97.5% reduction of CD19+ B cells in draining 

lymph node and an 80% reduction in the spleen compared to isotype controls 

(Figure 2A & B). Anti-CD20 treatment led to significantly less total lymphocytes 

(Figure 2C), significantly smaller lymph nodes (Figure 3), significantly less B220+ 

immunostaining (Figure 4), and significantly fewer germinal centers within 

draining lymph nodes (Figure 5). However, treated mice still had detectable 

antigen-specific antibodies to L. major and L. amazonensis antigens. Given these 

results, we have demonstrated that mice treated with anti-CD20 depletion 

antibodies at 2 weeks post-infection retain a population of responsive B cells and 

are capable of developing a detectable antibody response to the intracellular 

pathogen.  

In this study mice were treated with anti-CD20 antibody therapy at 2 

weeks post-infection to ensure a proper CD4+ T cell response. Other studies 

have shown that B cells regulate the initial proliferation of CD4+ T cells after 

encounter with antigen, influence the maintenance of CD4+ T cells, have roles in 
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CD4+ T cell memory responses, and can influence regulatory T cell numbers and 

function.24, 25, 26 Therefore, we did not begin B cell depletion therapy before 

infection, to ensure the functionality of the effector CD4+ T cell populations that 

are needed to resolve cutaneous leishmaniasis.  

It is possible that the mice were able to mount an effective humoral 

immune response to the Leishmania antigens within the first 2 weeks before 

depletion therapy began. This may have lead to the development of long-lived 

antigen-specific plasma cells that would not be affected by the anti-CD20 

therapy. The anti-CD20 dose we used was comparable to other murine studies 

that demonstrated B cell depletion with some studies depleting essentially all 

splenic B cells.27, 28 Our experimental system resulted in only an 80% reduction 

of B cells in the spleen. In addition, our data differs from some articles that have 

shown that bone marrow and spleen are more easily depleted than lymph 

nodes.1, 28, 29 We expected a more robust depletion and although we did not have 

an opportunity to test it, a reasonable hypothesis is that the decreased efficiency 

in depletion may be because of the ongoing chronic intracellular infection. It 

would be interesting to determine if splenic B cells are relatively resistant to anti-

CD20 depletion during a chronic infection, in contrast to draining lymph node B 

cells which had a 97.5% reduction in B cells. Many factors can influence 

depletion, including the drug dose administered, distribution to tissues, B-cell 

intrinsic and microenvironment factors affecting recruitment of effector 

mechanisms and antigen and effector modulation.1, 29  
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Other possible explanations for the lack of total depletion of functional B 

cells include the presence of CD20+ B cells that are resistant to anti-CD20 

therapies, such as marginal zone B lymphocytes, which have been suggested to 

be resistant to rituximab depletion.30 The site at which the B cells are located 

may also play a large role in the ability of the anti-CD20 depletion therapies. 

These differences by location may be due to the body’s ability to clear antibody 

targeted cells or the lack of FcR+ cells that are able to clear the targeted cells.18  

Another less likely theory that could account for the development of 

antibodies includes the presence of a CD20- or CD20low population of B cells that 

are not depleted by conventional B cell depletion therapies with anti-CD20 

antibodies that are still able to produce an antibody response. This may explain 

the different pattern of immunoglobulins seen on the immunoblots (Figure 6). 

Regardless, our results support other studies that have shown that despite B cell 

depletion therapy patients are still able to mount a humoral immune response to 

a primary antigen, although that response may be impaired.7, 9, 10, 31 In our 

experimental infection we show that mice were able to produce a demonstrable B 

cell response to an intracellular pathogen despite treatment with anti-CD20 

antibodies. These results precluded our ability to definitively test the role of B 

cells during Leishmania co-infection.  

To our knowledge, the work presented here describes, for the first time, 

the parameters of the B cell response to Leishmania infection after anti-CD20 B 

cell depletion. We showed that despite B cell depletion, the infected mouse is still 

able to mount a pathogen-specific humoral immune response. Since B cell 
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depletion therapy is common in people and is often used in conjunction with 

other immunosuppressive therapies, further research is necessary to determine 

the risks of B cell depletion therapy in patients with simultaneous infections and 

the possible differential susceptibility of B cell subpopulations to depletion during 

chronic infection. Therefore, further understanding of this model could better 

reflect some real life scenarios, in which those needing B cell therapy also have 

concurrent infections or established infections prior to treatment.  
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CHAPTER 3 

 

SOLUBLE IMMUNE COMPLEXES PROMOTE ANTIBODY-ENHANCED 
INTRACELLULAR KILLING OF LEISHMANIA AMAZONENSIS VIA 
UPREGULATION OF AUTOPHAGY  
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E. Jones1 
1Iowa State University, Department of Veterinary Pathology, Ames, IA, 50010 
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Abstract 

 

The intracellular protozoal parasite Leishmania can cause cutaneous and 

visceral leishmaniasis, a vector borne disease that infects approximately 1 million 

people each year. C3H mice infected with L. amazonensis develop chronic 

cutaneous lesions with large parasite loads. Using an in vitro assay with immune 

cells from infected mice we have previously shown that macrophage activation in 

response to soluble IgG2a immune complexes, IFN-γ and parasite antigen was 

effective in killing intracellular L. amazonensis. Parasite killing was dependent 

upon FcRγ common-chain and NADPH oxidase-generated superoxide from 

infected macrophages. Here we show that antibody-enhanced intracellular killing 

is associated with an upregulation of autophagy as determined by an increase in 

LC3II and colocalization of LC3 with parasites within parasitophorous vacuoles. 

LC3 colocalization and superoxide production were dependent upon the PKCδ 

pathway. These experiments define a new mechanism by which antibodies can 

promote killing of an intracellular pathogen post-infection. 
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Introduction 

Leishmaniasis is a vector-borne intracellular protozoan parasite transmitted by 

the bite of a sand fly, which transmits an infectious metacyclic promastigote that 

subsequently transforms to an amastigote within mammalian macrophages. 

Leishmania amazonensis causes cutaneous leishmaniasis in tropical and 

subtropical countries of the Western hemisphere. Leishmania parasites have 

been shown to interfere with host cell functions, including the modulation of 

signaling pathways, suppression of antimicrobial and pro-inflammatory 

mediators, and induction of cytokines that promote disease progression.1 Control 

of L. amazonensis within macrophages in vitro requires the production of reactive 

oxygen species and nitric oxide.2, 3 Currently treatment is through the use of 

pentavalent antimonials.4 Cutaneous and mucocutaneous leishmaniasis 

treatments are often poorly justified due to their limited effectiveness and 

numerous side effects. More research is needed to develop better treatment 

options with less severe side effects and better efficacy. 

Autophagy plays a role in cell survival throughout health and disease 

including, aging, cancer, neurodegenerative diseases, immunity, infectious 

diseases, and chronic inflammatory conditions.5 Canonical autophagy is an 

intracellular homeostatic mechanism important for the degradation of cytosomal 

components that range in size from single proteins to entire organelles via 

autodigestion through the lysosomal pathway. Multiple autophagic pathways 

exist in mammalian species and can be either nonselective or selective. 

Selective autophagy can target intracellular microorganisms in a process known 
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as xenophagy, and multiple host factors and pathways are activated and 

contribute to this process.6 Autophagosomes can be recognized by their 

association with microtubule-associated protein 1 light chain 3 (LC3), which is 

conjugated with phosphotidylethanolamine (PE) to form LC3II. In canonical 

autophagy LC3II facilitates the formation of a double-membrane autophagosome; 

which fuses with a late endosome or lysosome to form the autolysosome.7  

Recent studies have provided evidence for a role of autophagy in host cell 

defenses.8 Autophagy has been shown to play a role in innate immunity and can 

be activated through numerous pattern recognition receptors to participate in the 

elimination of microorganisms. Other studies have also confirmed that autophagy 

can target intracellular parasites and bacteria, including Listeria monocytogenes, 

Salmonella enterica, Francisella tularensis, and Toxoplasma gondii.9, 10, 11, 12, 13, 

14, 15  

Non-canonical autophagy can be used by phagocytes to kill and digest 

pathogens.16 Non-canonical autophagy is described as autophagy that is 

independent of some of the core canonical machinery components, such as the 

initiation factors ULK1 and ULK2.6 Recently, a form of non-canonical autophagy 

has been described that utilizes LC3 recruitment and the fusion of the 

phagosome and lysosome without the formation of a double membrane 

autophagosome.6, 16, 17 This type of non-canonical autophagy has been referred 

to as LC3-associated phagocytosis (LAP) and can be triggered by innate immune 

receptors such as Fc receptors, TLRs, or C-type lectin receptors.16 LAP is similar 

to canonical autophagy with the utilization of Beclin-1 and class III PI3K activity 
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along with the recruitment of LC3 to the phagosome.16 It is preceded by the 

generation of reactive oxygen species (ROS) through nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, which utilizes the protein Rubicon to 

further recruit LC3II to the phagosome membrane and induce LAP.17, 18   

Inflammatory cytokines have also been involved in the activation of 

autophagy. IFN-γ may activate autophagy through immunity-related GTPases 

and through phosphorylation of beclin 1 by death-associated protein kinase 1 

(DAPK1).19 The signaling mechanisms that autophagy uses for the degradation 

of intracellular microorganisms are largely undetermined. More research is 

needed to elucidate the specific signaling pathways; however, it appears that 

lipid second messengers and phosphatidylinositol 3-phosphate (PI3P) are 

required for autophagy.20 Shahnazari et al. have demonstrated that diacylglycerol 

(DAG) can serve as a signal to promote antibacterial autophagy via PKCδ. This 

leads to the activation of autophagy via NADPH oxidase pathways within 

phagocytes.20  

Reactive oxygen species (ROS) are classical antimicrobial effectors, 

which play an important role in immune signaling. ROS produced by NADPH 

oxidase downstream of TLR or Fcγ receptor stimulation in phagocytes can 

activate non-canonical autophagy.5, 18 We have previously shown that ROS are 

required to kill intracellular Leishmania amazonensis.21 Numerous studies have 

shown a connection between ROS and non-canonical autophagy, although these 

signaling pathways are complex and not completely understood.22  
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In this report we show a mechanism for the reduction in Leishmania 

amazonensis infection through the activation of autophagy, as determined by the 

colocalization of LC3 with the parasite after stimulation of macrophages with 

soluble immune complexes, IFN-γ, and Leishmania antigen. Our lab has 

determined the necessary immune factors required for the reduction of L. 

amazonensis by comparing the limited, transient, infections of L. major to the 

chronic infections of L. amazonensis. We found that mice co-infected with both L. 

major and L. amazonensis would heal their infections. Throughout our studies we 

have determined that superoxide and nitric oxide are required to kill L. 

amazonensis. We have also determined that the production of superoxide can be 

achieved through the stimulation of macrophages by soluble immune complexes, 

IFN-γ, and Leishmania antigen.23 We hypothesize that these three immune 

factors are providing receptor cooperation to stimulate non-canonical autophagy 

and removal of the parasite. These results are similar to the findings of 

Bezbradica et al, in which they found receptor cooperation between FcγRI and 

IFN-γR for the induction of the antimicrobial functions.24 We found have found 

that activating macrophages with soluble immune complexes, IFN-γ, and 

Leishmania antigen, we not only see killing of the parasite; but we also find 

upregulation of autophagy which was dependent upon PKCδ. This is also similar 

to other studies that have shown a role of non-canonical autophagy in the 

clearance of intracellular microorganisms and its regulation by PKCδ.9, 10, 11, 12, 13, 

14, 15 
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Materials and Methods 
 
Mice 

C3HeB/FeJ (C3H) mice (8-10 weeks of age) were obtained from an in-house 

breeding colony. Mice were maintained in a specific pathogen-free facility. Bone 

marrow from PKCδ-/- and C57BL/6 (B6) mice were obtained as a gift from Dr. A. 

Kanthasamy. All procedures involving animals were approved by the Institutional 

Animal Care and Use Committee at Iowa State University.  

Bone marrow macrophages and cell culture 

Bone marrow cells were harvested from femurs and tibias of C3H, B6 or PKCδ-/- 

animals (1-3 mice per experiment) and plated in 150 x 15 mm Petri dishes with 

30ml of macrophage growth medium (30% L-cell conditioned medium, 20% fetal 

bovine serum (FBS), 50% Dulbecco’s modification of eagle’s medium (DMEM), 

2mM L-glutamine, 100 U penicillin per ml, 100µg of streptomycin per ml and 1 

mM sodium pyruvate) at 37°C and 5% CO2, after 2 days an additional 20 ml of 

macrophage medium was added.  At day 7, the adherent cell population was 

collected and, after washing with PBS, trypan blue exclusion was used to count 

live cells, which were resuspended in complete tissue culture medium (CTCM; 

DMEM, 2mM L-glutamine, 100 U penicillin, 100µg streptomycin/ml, 25 mM 

HEPES, 0.05 um 2-mercaptoethanol and 10% FBS). 

RAW 264.7 Cells 

RAW 264.7 mouse macrophage cells were maintained in complete tissue culture 

media (CTCM; DMEM, 2mM L-glutamine, 100 U penicillin, 100µg 

streptomycin/ml, 25 mM HEPES, 0.05 um 2-mercaptoethanol and 10% FBS).  
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Parasites and Antigens 

L. amazonensis (MHOM/BR/00/LTB0016) promastigotes were grown in complete 

Grace’s medium (Atlanta Biologicals, Lawrencville, GA) to stationary phase, 

harvested, washed in endotoxin free PBS (Cellgro, Herdon, VA) and prepared to 

a concentration of 1 x 108 parasites/mL. Freeze-thawed (FT) Leishmania major-

antigen was obtained from stationary phase promastigotes as previously 

described.25  

Macrophage infection and treatments 

Bone marrow-derived macrophages (BMM) or RAW cells were infected with 

promastigotes as indicated in the figure legends at 3:1 parasite to cell ratio. In 

indicated experiments L. amazonensis promastigotes were labeled with 

carboxyfluorescein diacetate succinimidyl ester (CFSE). The infected cells were 

incubated on coverslips at 34°C with 5% CO2 in 24 well plates. After 24 hours, 

cells were washed with warm DMEM to remove extracellular parasites and 

brought to a final volume of 0.5 ml with CTCM.   

Activation of infected macrophages using soluble immune complexes 

Mouse IgG2a  isotype (functional grade purified, eBioscience) was either 

unlabeled or labeled with Alexa Fluor (AF) 647 (Invitrogen), depending on 

experiment. Soluble immune complexes (ICs) were formed by combining mouse 

IgG2a and goat anti-mouse IgG F(ab’)2 (AffiniPure F(ab’)2 Fragment, Jackson 

ImmunoResearch) at a 2:1 molar ratio and incubated for 2 hours at 37°C with 5% 

CO2. ICs were centrifuged at 15,000g for 10 minutes and the supernatant was 

collected for use.26 Twenty-four hours following infection with L. amazonensis 
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promastigotes, macrophages were washed with warm DMEM and the media was 

replaced with 0.5 ml of fresh CTCM. Cells were then incubated with these pre-

formed soluble ICs (10 μg/ml), IFN-γ(Peprotech, 5 ng/ml), FT-Ag (50 μg/ml), 

IgG2a (10 μg/ml), or F(ab’)2 (10 μg/ml), or combinations of these, as indicated. 

Cells were then incubated for 12 or 24 hours at 34°C with 5% CO2. At the 

indicated timepoint, cells were harvested on coverslips and fixed with 4% 

paraformaldehyde for 10 minutes. 

Determination of macrophage infection rate 

Following incubation for 24 hours, coverslips were harvested, fixed and stained 

using nonspecific HEMA 3 stain set (Fisher Diagnostics, Middletown, VA).  

Coverslips were mounted onto glass slides and counted via light microscopy at 

100x oil magnification. Three areas of 100 cells each were examined and the 

number of infected macrophages/100 cells was recorded.  

Immunoblot Analysis 

Protein content of all cell extracts was determined via nanodrop (ND-1000, 

Wilmington, Delaware), according to manufacturer’s recommendations, and all 

samples were normalized to 2 mg/ml using distilled water. Samples (20 to 30 μg 

of protein) were heated for 4 minutes at 95°C in 6x SDS loading buffer and 

electrophoresis was performed on a 12% SDS-polyacrylamide electrophoresis 

gel. Gels were electroblotted onto polyvinylidene fluoride membranes, blocked 

with 5% dry milk, and probed with anti-LC3B antibody (ab48394, AbCam) or anti-

Actin antibody (Sigma). Signals were detected with horseradish-peroxidase-

conjugated goat anti-rabbit antibodies (1:10,000) (Sigma) using the SuperSignal 
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West chemiluminescent substrate (Pierce, Rockford, IL) and exposed to 

autoradiography film (Midsci, St. Louis, MO).  

Determination of superoxide 

Production of superoxide was assessed using CellROX (Invitrogen). CellROX 

was added to cell cultures at a final concentration of 5 μM after 24 hours and 

allowed to sit for 30 min (according to manufacturer’s instructions). Coverslips 

were then analyzed via confocal microscopy. Coverslips were viewed by 

sequential scanning confocal microscopy using an Olympus IX81 inverted scope 

(Olympus America Inc., Center Valley, PA). Image J was used to determine the 

colocalization and intensity of signal of CellROX (superoxide) and parasite. 

Briefly, CFSE positive parasites were isolated and the intensity of Alexa Fluor 

647 positive CellROX was measured in the isolated areas. An average of the 

CellROX intensity was measured taken after analysis of 5 images per each 

treatment group in each experiment. 

Immunofluorescence 

Following incubation for the designated times, coverslips with adherent RAWs 

were harvested and fixed with 4% paraformaldehyde in PBS for 10 minutes at 

room temperature and washed three times with PBS. RAWs were permeabilized 

with 1% Saponin in PBS for 30 minutes at room temperature. After incubation, 

coverslips were washed three times with PBS and incubated for 1 hour at room 

temperature with anti-LC3 conjugated antibody at a 1:200 dilution in 1% Saponin 

in PBS. RAWs were counterstained and mounted with Gold antifade 4’6-

Diamidino-2-phenindole (DAPI) according to manufacturer’s instructions (Life 
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Technologies, Grand Island, NY).  Superoxide production was detected through 

the use of CellROX deep red reagent (Alexa Fluor 647) (Life Technologies, 

Grand Island, NY). CellROX was added to the cells for 30 minutes before 

fixation, according to manufacturer’s instructions. Coverslips were viewed by 

sequential scanning confocal microscopy using an Olympus IX81 inverted scope 

(Olympus America Inc., Center Valley, PA).  

Quantitative colocalization analysis was performed by counting LC3 and parasite 

association using Olympus Fluoview version 2.1c software. 150 parasites were 

counted; those that were in contact with an LC3 puncta were considered positive 

for colocalization, considering LC3 puncta that are involved with the 

parasitophorous vacuole may not co-localize with a parasite residing within the 

vacuole. Image J was used to determine the colocalization and intensity of signal 

of CellROX (superoxide) and parasite.  

 

Results 

Bone marrow derived macrophages infected with Leishmania amazonensis and 

treated with tripartite activation upregulate LC3II.  

We have previously shown that BMM infected with Leishmania amazonensis can 

kill intracellular parasites after activation with soluble immune complexes, 

Leishmania antigen, and IFN-γ (tripartite activation)23. We were interested in the 

mechanisms of this model of parasite clearance and hypothesized that the 

autophagy pathway would be upregulated when macrophages are activated to 

kill intracellular parasites. Shanazari et al found the intracellular pathogen 
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(Salmonella Typhimurium) is targeted by autophagy in mammalian cells and 

dependent upon functional NADPH oxidase. Therefore, we wanted to determine 

if autophagy is also targeting intracellular Leishmania parasites in tripartite 

activated cells. We performed a western blot analysis for LC3II in BMM bone 

marrow derived macrophages infected with Leishmania amazonensis and treated 

24 hours later with soluble IC, Leishmania antigen, and IFN-γ or the appropriate 

controls. Lysates were collected at day 4 post-treatment. We showed a 

significant increase in LC3II whenever soluble IC were added to Leishmania 

amazonensis infected macrophages. (Figure 1) 
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Figure 1. Bone marrow derived macrophages infected with Leishmania 
amazonensis (LA) and activated with tripartite activation upregulate LC3II.  
A: Bone marrow derived macrophages were infected with LA promastigotes and 
activated 24 hours later for 4 days. Treatments included soluble immune 
complexes (IC) (10 μg/ml) with IFN- γ (5 ng/ml) and Leishmania antigen (50 
μg/ml); IgG2a (5 μg/ml) with IFN- γ (5 ng/ml) and Leishmania antigen (50 μg/ml); 
F(ab)2 (5 μg/ml) with IFN- γ (5 ng/ml) and Leishmania antigen (50 μg/ml); IC (10 
μg/ml) with IFN- γ (5 ng/ml); and IC (10 μg/ml) with Leishmania antigen (50 
μg/ml) . Lysates were collected and immunofluorescence was completed for 
LC3II and Actin. In bone marrow macrophages there is an upregulation of LC3 in 
LA infected macrophages whenever soluble immune complexes are added. 
Results are densitometry of 5 separate experiments. B: Image from one 
representative experiment. 
 

IC, G, A IgG, G, A Fab, G, A IC, G IC, A Day 4 LA infected 
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RAW 264.7 macrophages infected with Leishmania amazonensis and treated 

with tripartite activation show a decrease in parasite load at 24 hours post 

treatment 

We have previously shown that this tripartite activation system in bone marrow 

derived macrophages after four days of treatment.23 Next, we wanted to study 

this system in vitro in RAW 264.7 macrophages as they are commonly used in 

autophagy studies and it is known that they produce low levels of NOX2-

generated ROS for a short duration compared to bone marrow derived 

macrophages.27, 28 We showed that RAW 264.7 cells had a decrease in parasite 

load at 24 hours post-activation (Figure 2), compared to four days post activation 

in bone marrow derived cells. Confirming that tripartite activation recapitulates 

the results of bone marrow derived macrophages. However, a western blot for 

LC3II in treated RAW 264.7 cell lysates infected with Leishmania amazonensis 

showed no significant increase in LC3II protein expression compared to controls 

(data not shown). 



www.manaraa.com

 

 

66

 

 
Figure 2. RAW 264.7 macrophages infected with Leishmania amazonensis and 
treated with tripartite activation show a decrease in parasite load at 24 hours post 
treatment 
RAW 264.7 macrophages were infected with LA promastigotes for 24 hours then 
treated for 24 hours (as in Figure 1) until coverslips were collected, fixed and 
mounted for counting infected via light microscopy. Three areas of 100 
macrophages were counted under 100X oil immersion and the number of 
macrophages containing intracellular LA was recorded. The results include three 
separate experiments. a = P<0.0001. 
  

Tripartite activation of infected RAW 264.7 cells leads to colocalization of LC3II 

with Leishmania amazonensis 

Due to the lack of upregulation of LC3II in RAW 264.7 cells we focused on the 

distribution of LC3II in infected and activated cells. We hypothesized that the 

location of LC3II was an important readout as to regulation of autophagy during 

parasite killing post-activation. RAW 264.7 cells infected with Leishmania 
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amazonensis and treated with the tripartite activation (soluble immune 

complexes, Leishmania-antigen, and IFN-γ) had a significant increase in parasite 

and LC3II colocalization as compared to the controls (Figure 3). The addition of 

IgG2a or F(ab)2 alone with Leishmania-antigen, and IFN-γ was not enough to see 

colocalization.  

 

 
Figure 3. Tripartite activation of infected RAW 264.7 cells leads to colocalization 
of LC3II with Leishmania amazonensis. 
RAW 264.7 macrophages were infected with LA promastigotes for 24 hours then 
treated for 24 hours as in Figure 1, until coverslips were collected, fixed and 
mounted for confocal microscopy. LC3/LA colocalization was counted using 
Olympus Fluoview version 2.1c software. Colocalization of 150 parasites with 
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LC3 were counted; those that were in contact or overlapping with an LC3 puncta 
were considered positive for colocalization. A. Examples of positive and negative 
colocalization. Top row: negative colocalization; Middle row: positive 
colocalization; Bottom row: Positive colocalization (arrow), others are negative. 
B. There was a significant increase in LC3/LA colocalization in cells treated with 
soluble IC, IFN-γ, and Leishmania antigen. Results include three separate 
experiments. P=<0.001 C. Tripartite activation shows positive parasite and LC3 
colocalization compared to no treatment which shows no parasite and LC3 
colocalization. The results are pooled from two separate experiments in 
duplicate. 
 

Tripartite activation of infected RAW 264.7 cells leads to an increase in the 

intensity of superoxide associated with Leishmania amazonensis 

Our lab has shown in previous work that both superoxide and nitric oxide are 

necessary to kill intracellular Leishmania amazonensis.21 Therefore, we were 

interested in determining if our system was activating superoxide production near 

the intracellular parasites. We used a CellROX analysis to detect superoxide 

production via confocal microscopy. RAW 264.7 cells were infected with CFSE-

labeled Leishmania amazonensis and treated the following day with soluble 

immune complexes, Leishmania-antigen, and IFN-γ or the appropriate controls. 

At 24 hours post-treatment CellROX was added for 30 minutes and the cells 

were fixed and mounted for confocal microscopy. There was a significant 

increase in the intensity of superoxide overlying the parasite when the cells were 

treated with tripartite activation as compared to the controls. Again, this was only 

true when all 3 activation molecules were added to the treatment and it did not 

occur with the addition of IgG2a or F(ab)2 with both Leishmania-antigen, and 

IFN-γ.  
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Figure 4. Tripartite activation of infected RAW 264.7 cells leads to an increase in 
the intensity of superoxide overlying Leishmania amazonensis. 
RAW 264.7 macrophages were infected with LA promastigotes for 24 hours then 
treated for 24 hours until coverslips were collected, fixed and mounted for 
confocal microscopy. Image J was used to determine the colocalization of 
CellROX (superoxide) and parasite. CFSE positive parasites were isolated and 
the intensity of Alexa Fluor 647 positive CellROX was measured in the isolated 
areas. An average of the CellROX intensity was measured after analysis of 5 
images per treatment group in each experiment. There was a significant increase 

B 
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in CellROX intensity overlying LA in cells treated with soluble IC, IFN-γ, and 
Leishmania antigen. Results are a total of two separate experiments. B. Tripartite 
activation showed a dectectable increase in CellROX intensity overlying 
parasites compared to no treatment. 
 

 

Protein kinase C delta (PKC δ) is required for killing of Leishmania amazonensis, 

LC3II and parasite colocalization, and superoxide production 

Shahnazari et al. found that diacyclglycerol can promote autophagy by recruiting 

PKCδ, which can activate autophagy via c-Jun N-terminal kinase (JNK) and 

NADPH oxidase pathways.20 Due to the similarities to Salmonella infection, we 

hypothesized that this signaling pathway was also playing a significant role in our 

system and that inhibiting this pathway would inhibit the activities of the tripartite 

activation. Bone marrow macrophages were derived from PKCδ-/- on a C57BL/6 

background along with macrophages from wild-type C57BL/6 as controls. The 

macrophages were infected with Leishmania amazonensis promastigotes and 24 

hours later treated with tripartite activation. After 4 days of treatment, cells were 

fixed and analyzed either by light microscope for parasite counts or confocal 

microscopy for LC3 and CellROX localization and production, respectively. 

PKCδ-/- macrophages did not have a decrease in parasite load as compared to 

the wild-type C57Bl/6 controls. Additionally, the PKCδ-/- BMM did not show 

colocalization of LC3II and parasites and did not have an increase in superoxide 

production associated with parasites as compared to the wild-type C57Bl/6 

controls. These results demonstrate that this pathway is integral to the autophagy 
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and NADPH pathways in the clearance of Leishmania amazonensis following 

tripartite activation. 

 

 
 
Figure 5. Protein kinase delta C (PKC-δ) deficient (-/-) bone marrow derived 
macrophages are unable to kill intracellular Leishmania amazonensis, do not 
promote LC3II and parasite colocalization, and do not produce superoxide. 
C57Bl/6 wildtype and PKC δ -/- bone marrow derived macrophages were 
infected with LA promastigotes and treated 24 hours later for 4 days as in Figure 
1. A and B. Coverslips were collected, fixed and mounted for counting infected 
macrophages via light microscopy. LC3/LA colocalization was determined using 
Olympus Fluoview version 2.1c as previously described. C. Coverslips were 
collected, fixed and mounted for confocal microscopy. Image J was used to 
determine the colocalization of CellROX (superoxide) and parasite as previously 
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described. Results are a total of two separate experiments in duplicate. D. Wild-
type and PKCδ -/- cells treated with tripartite activation and processed and 
imaged as in A. E. Wild-type PKCδ -/- cells treated with tripartite activation and 
processed as in C.  
 

Discussion 

Our results show that IFN-γ, soluble immune complexes, and Leishmania-

antigen are all required to trigger an antimicrobial response against Leishmania 

amazonensis.  

Only all three immune factors triggered an antimicrobial response with a 

corresponding increase in superoxide production and colocalization of LC3 to the 

parasite. A recent article has described the structural and functional cooperation 

between the IFN-γ and FcγRI receptors; allowing these receptors to act as a 

coincidence detection system eliciting unique gene-expression programs when 

both receptors are engaged.24 Only the activation of both receptors triggered the 

induction of antimicrobial functions against L. amazonensis. This coincidence 

detection system allows a distinct response when both signals are present; 

however, the extent of dependence on signals from other receptors could vary in 

different situations.24 Here we describe the need for cooperation between the 

activation of three potential receptors in order to induce antimicrobial functions 

against L. amazonensis.  

We show that these effector molecules act through the PKCδ pathways to 

activate autophagy via the NADPH oxidase pathway with colocalization of LC3II 

with the parasite. This pathway is consistent with a recent article that has 

described the promotion of autophagy of Salmonella Typhimurium through these 
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pathways.20 This is also similar to the findings by Shahnazari et al. that 

demonstrate a diacylglycerol-dependent signaling pathway in the regulation of 

antibacterial autophagy.29, 30 Shahnazari et al. propose that DAG acts at the 

target organelle to recruit PKCδ, which can activate autophagy via the JNK and 

NADPH oxidase pathways.20 We found that the loss of PKCδ through the use of 

knock out mice resulted in a loss of the antimicrobial actions of the macrophages 

along with a decrease in LC3 colocalization and superoxide production.  

We found that the addition of soluble immune complexes to bone marrow 

derived macrophages lead to an increase in LC3II. We also found that the 

autophagy pathway can play a role in the clearance of Leishmania amazonensis 

in infected macrophages and PKCδ plays an important role in autophagy 

signaling. We have previously shown that soluble ICs can promote parasite 

clearance through the generation of antibody-dependent superoxide 

production.23 The assembly of NADPH oxidase can eventually lead to the 

recruitment of molecules integral to the autophagy pathway and activation of this 

pathway.27 The activation of antibacterial autophagy by NADPH oxidases has 

been described by Huang et al, which can be extrapolated to other intracellular 

pathogens, such as Leishmania.27  

The immunomodulation of these pathways may lead to potential 

therapeutic benefits for treatment of intracellular pathogens, especially 

Leishmania species. The ability to target the microbe to autophagy pathways 

without the use of antimicrobials could be a potential route to decrease 

antimicrobial resistance amongst pathogens. Here we have described how a new 
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mechanism by which antibodies function to clear an infection via NADPH oxidase 

and autophagy pathways.31 Further research is needed to elucidate the specific 

signaling pathways such as to determine specific signals involved in FcγR 

mediated phagocytosis. Specific signaling and receptor cooperation that is 

involved in the upregulation of autophagy for the clearance of Leishmania 

amazonensis also needs to be elucidated. Finally, determining the specific 

molecules that are involved in the anti-Leishmania autophagy pathway will be 

integral in specifying the type of non-canonical autophagy that is occurring and 

the formation of LAPosomes.  
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CHAPTER 4 
 

CROSSLINKING OF FCγR WITH A RECOMBINANT FC CONSTRUCT CAN 
ACTIVATE MACROPHAGES TO PRODUCE SUPEROXIDE AND ENHANCE 
INTRACELLULAR KILLING OF LEISHMANIA amazonensis 
 
Marie M. Bockenstedt1, Adam Barb2, Brett Sponseller3, Douglas E. Jones1 
1Iowa State University, Department of Veterinary Pathology, Ames, IA, 50010 
2Iowa State University, Department of Biochemistry, Biophysics, and Molecular 
Biology, Ames, IA 50010 
3Iowa State University, Department of Veterinary Microbiology and Preventative 
Medicine, Ames, IA 50010 
 
Abstract 

We have previously shown that macrophage activation in response to soluble 

IgG2a immune complexes, IFN-γ, and parasite antigen was effective in killing 

Leishmania amazonensis; and that intracellular killing of L. amazonensis 

parasites is dependent upon FcRγ common-chain and NADPH oxidase-

generated superoxide from infected macrophages. Here we show that activation 

of a macrophage with a novel recombinant murine IgG2a-Fc construct will result 

in construct trafficking and induce superoxide production. Preliminary studies 

also show killing of L. amazonensis. A recombinant murine IgG2a-Fc construct 

was created by expressing the protein in HEK293F cells. This construct has 

homologous morphology to the Fc portion of IgG2a consisting of the Fc portion of 

a single heavy chain, which naturally forms a dimer with another heavy chain, 

creating a single homodimer of Fc fragment of IgG2a. These experiments define 

a new mechanism by which recombinant constructs can be developed to 

manipulate the immune response to promote killing of an intracellular pathogen, 

post-infection.  
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Introduction 

Cutaneous leishmaniasis can be caused by the intracellular protozoan parasite 

Leishmania amazonensis. Leishmaniasis is endemic in many tropical and 

subtropical countries, and is currently considered a neglected tropical disease. 

Cutaneous leishmaniasis can lead to severe disease that begins as an insect bite 

that gradually enlarges and can become an open sore with occasional 

disfiguration. Spontaneous resolution generally occurs, although the time to 

resolution varies.1 Clearance of L. amazonensis requires the production of 

reactive oxygen species and nitric oxide.2 There are no available vaccines for 

cutaneous leishmaniasis and most treatments have limited effectiveness with 

numerous side effects. 

Our lab has previously shown that reduction of L. amazonensis is 

parasites in vitro can be dependent upon Fragment crystallizable receptor-γ 

(FcRγ) common-chain, nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase generated superoxide, and iNOS generated nitric oxide from infected 

macrophages. We discovered a method of macrophage activation with non-

specific soluble IgG2a immune complexes, IFN-γ, and parasite antigen that were 

effective in killing L. amazonensis. We have previously found that soluble 

immune complexes promoted a NADPH oxidase-dependent leishmanicidal 

response post-infection.3 This is a novel means by which a host can effectively 

use IgG antibodies to effectively enhance killing of intracellular pathogens.     

Here we describe the production of a novel recombinant protein that has 

homology with the Fc portion of murine IgG2a. This protein was designed to 
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replace the use of non-specific soluble immune complexes in our system for 

activating macrophages. The production of recombinant proteins allows for a 

high yield of proteins that can be tagged with GFP or other proteins. These 

proteins can also be labeled with different glycosylation patterns, which can 

affect their affinity for their receptor.4 

Immunoglobulin engagement of antibody Fc receptors, which are found on 

many cell surfaces, can induce a variety of immune functions by regulating 

intracellular signaling. Antibody Fc receptors are named by their ability to bind a 

specific immunoglobulin isotype. FcγRI (CD64) is present on the surface of 

monocytes and macrophages, and bind, with high affinity, the Fc portion of IgG1 

or IgG2a in humans and mice, respectively. The main immune functions of Fc 

receptor engagement are facilitation of phagocytosis, antibody-dependent cell-

mediated cytotoxicity (ADCC), induction of release of inflammatory mediators, 

and regulation of lymphocyte proliferation and differentiation.5 Given their wide 

array of functions in modulating the immune response new and promising 

strategies have unfolded for developing molecules that are able to mimic FcR-Ig 

interaction to exploit immunoregulation.6  

Cell surface expression of FcγRI can be induced by IFNγ. FcγRI in turn can bind 

monomeric IgG2a and take it up via endocytosis in mice.7 Cross-linked receptors 

lead to internalization of the antigen-antibody complex and activation of the cell 

to produce effector functions, such as superoxide production.7 FcγRI signals 

through a common γ chain and activates the proto-oncogene tyrosine protein 

kinase (SRC) family of kinases, spleen tyrosine kinase (SYK), and has been 
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shown to induce superoxide production when bound by large insoluble IC.8 

However, when small soluble immune complexes (ICs) bind the FcγRI, they are 

internalized by endocytic pathways, leading to other functions, such as receptor 

expression, regulation of signal transduction, antigen presentation, endosome 

recycling, and other actions.9 Other studies have shown that these small soluble 

ICs can also induce superoxide production upon cross-linking of the FcγRI.10, 11 

The ability to manipulate these receptors in order to get a timely and localized 

release of inflammatory mediators can be helpful in inducing an effective immune 

response against intracellular pathogens. In this study we have found that the 

production of novel recombinant Fc constructs can bind and activate 

macrophages to kill intracellular Leishmania amazonensis and induce superoxide 

production. 

 

Materials and Methods 

Mice 

C3HeB/FeJ (C3H) mice (8-10 weeks of age) were obtained from an in-house 

breeding colony. Mice were maintained in a specific pathogen free facility. All 

procedures involving animals were approved by the Institutional Animal Care and 

Use Committee at Iowa State University.  

Bone marrow macrophages and cell culture 

Bone marrow cells were harvested from femurs and tibias of C3H mice and 

plated in 150 x 15 mm Petri dishes with 30 ml of macrophage medium (30% L-

cell conditioned medium, 20% fetal bovine serum (FBS), 50% Dulbecco’s 
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modification of eagle’s medium (DMEM), 2 mM L-glutamine, 100 U penicillin per 

ml, 100 μg of streptomycin per ml, and 1 mM sodium pyruvate) at 37o C and 5% 

CO2, after 2 days an additional 20 ml of macrophage medium was added. At day 

7, the adherent cell population was collected and, after washing with PBS, trypan 

blue exclusion was used to count live cells, which were resuspended in complete 

culture medium (CTCM; DMEM, 2 mM L-glutamine, 100 U penicillin, 100 μg 

streptomycin per ml, 25 mM HEPES, 0.05 μm 2-mercaptoethanol, and 10% 

FBS).  

J774 and RAW264.7 Cells 

The RAW264.7 and J774 mouse macrophage cell lines were maintained in 

complete tissue culture media (CTCM; DMEM, 2 mM L-glutamine, 100 U 

penicillin, 100 μg streptomycin per ml, 25 mM HEPES, 0.05 μm 2-

mercaptoethanol, and 10% FBS). 

Parasites and Antigen 

L. amazonensis (MHOM/BR/00/LTB0016) promastigotes were grown in complete 

Grace’s medium (Atlanta Biologicals, Lawrenceville, GA) to stationary phase, 

harvested, washed in endotoxin free PBS (Cellgro, Herdon, VA) and prepared to 

a concentration of 1 x 108 parasites per ml. Freeze-thawed Leishmania major 

antigen was obtained from stationary phase promastigotes as previously 

described.2 

Transfection of HEK293 cells for the production of the recombinant Fc construct 

HEK293 cell cultures are maintained in Medium A and Medium B at 37oC. 

Approximately 1 x 106 cells per ml are incubated with purified pGEn2 vector 
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encoding the target plasmid DNA for 24 hours. After an additional 4-5 days of 

incubation, cells are harvested for protein purification. The protein is purified 

using protein-A sepharose column and analyzed by SDS-PAGE. 

Macrophage infection and treatments 

RAWs were infected with promastigotes as indicated in the figure legends at 3:1 

parasites to cell ratio. In indicated experiments L. amazonensis promastigotes 

were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). The 

infected cells were incubated on coverslips at 34oC with 5% CO2 in 24 well 

plates. After 24 hours, macrophages were washed with DMEM to remove 

extracellular parasites and brought to a final volume of 0.5 ml with CTCM. 

Activation of infected macrophages using soluble immune complexes or Fc 

construct 

Mouse IgG2a (functional grade purified, eBioscience) was either unlabeled or 

labeled with Alexa Fluor (AF) 647 (Invitrogen). Soluble immune complexes (ICs) 

were formed by combining mouse IgG2a and goat anti-mouse IgG F(ab’)2 

(AffiniPure F(ab’)2 Fragment, Jackson ImmunoResearch) at a 2:1 molar ratio and 

incubated for 2 hours at 37oC with 5% CO2. ICs were centrifuged at 15,000g for 

10 minutes and the supernatant was collected for use.3 Twenty-four hours 

following infection with L. amazonensis promastigotes, macrophages were 

washed with warm DMEM and the media was replaced with 0.5 ml CTCM. Cells 

were then incubated with these pre-formed soluble ICs (10 μg/ml), IFN-γ (5 

ng/ml, Peprotech), FT-Ag (50 μg/ml), IgG2a (10 μg/ml), or F(ab’)2 (10 μg/ml), or 

combinations of these, as indicated. Cells were then incubated for 12 or 24 hours 
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at 34°C with 5% CO2. At the indicated timepoint, cells were harvested on 

coverslips and fixed with 4% paraformaldehyde for 10 minutes. 

Determination of macrophage infection rate 

Following incubation for 24 hours, coverslips were harvested, fixed and stained 

using nonspecific HEMA 3 stain set (Fisher Diagnostics, Middletown, VA).  

Coverslips were mounted onto glass slides and counted via light microscopy at 

100x oil magnification. Three areas of 100 cells each were examined and the 

number of infected macrophages/100 cells was recorded.  

Binding and inhibition of binding 

Fc construct or IgG2a were added to cell cultures for a given amount of time, as 

indicated, then fixed for immunofluorescence with 4% paraformaldehyde for 10 

minutes and washed three times with 1X phosphate buffered saline (PBS). After 

coverslips were washed they were mounted with Gold antifade 4’6-Diamidino-2-

phenindole (DAPI) according to manufacturer’s instructions (Life Technologies, 

Grand Island, NY).   Binding inhibition study was done by adding Fc construct or 

IgG2a for 30 minutes, then macrophages were washed with endotoxin free PBS 

and the opposing molecule was added to the cells for 10 minutes. The cells were 

then fixed and visualized with confocal microscopy as previously described. 

Endocytosis and phagocytosis inhibition 

RAWs were incubated for 1 hour at 37oC with 80 μM Dynasore, 0.2% DMSO, or 

5 μg/ml of Cytochalasin D in DMEM. After 1 hour, Fc-coated bead, Fc construct, 

along with IFN-γ were added to the appropriate wells. Cells were incubated for 0, 

0.5, 1, 2, 4, and 12 hours then fixed with 4% paraformaldehyde and visualized 
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with confocal microscopy.  

Determination of superoxide 

Production of superoxide was assessed using CellROX (Invitrogen). CellROX 

was added to cell cultures after 24 hours and allowed to incubate at 37oC for 30 

min (according to manufacturer’s instructions). Coverslips were then analyzed via 

confocal microscopy. 

Immunofluorescence 

Following incubation for the designated times, coverslips with adherent RAWs 

were harvested and fixed with 4% paraformaldehyde in PBS for 10 minutes at 

room temperature and washed three times with PBS. RAWs were permeabilized 

with 1% Saponin in PBS for 30 minutes at room temperature. After incubation, 

coverslips were washed three times with PBS and counterstained and mounted 

with Gold antifade 4’6-Diamidino-2-phenindole (DAPI) according to 

manufacturer’s instructions (Life Technologies, Grand Island, NY).  Superoxide 

production was detected through the use of CellROX deep red reagent (Life 

Technologies, Grand Island, NY) as described above. Coverslips were viewed by 

sequential scanning confocal microscopy using an Olympus IX81 inverted scope 

(Olympus America Inc., Center Valley, PA). Image J was used to determine the 

colocalization of CellROX (superoxide) and parasite. Briefly, CFSE positive 

parasites were isolated and the intensity of CellROX was measured in these 

isolated areas. An average of the CellROX intensity was measured after analysis 

of 5 images per each treatment group in each experiment.  
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Results 

Murine IgG2a Fc construct developed in HEK293F cells 

In our in vitro disease model, we are able to kill intracellular L. amazonensis by 

activation of macrophages with soluble immune complexes of IgG2a isotype, 

IFN- γ, and Leishmania antigen. We hypothesized that the production of a 

homologous Fc construct protein would act in a similar manner when compared 

to murine IgG2a. Fc construct was produced in HEK293F cells as described in 

materials and methods and purified and tested as a replacement for nonspecific 

soluble IgG2a immune complexes in our previously described tripartite activation 

of macrophages.3 

 

 

Figure 1. Murine IgG2a Fc construct developed in HEK293F cells. The construct 
is tagged with GFP and Avi for biotin binding and naturally forms a dimer.  
 

Fc construct binds to murine macrophages 

Murine macrophages incubated with GFP-tagged Fc construct had similar 

staining pattern compared to macrophages incubated with AF 647 labeled 

murine IgG2a. GFP-Fc construct and AF647-IgG2a can be seen along the cell 

membrane and often within the cytoplasm of the murine macrophages (Figure 2). 

Bone marrow derived macrophages and J774 macrophages had similar results 

with RAWs (data not shown).  
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Figure 2. Murine macrophages incubated with GFP-tagged recombinant IgG2a 
Fc construct or with Alexa Fluor 647 labeled IgG2a. A and B: J774 cells 
incubated with Fc (5 μg/ml) (A) or IgG2a (5 μg/ml) (B) for 1 minute. C and D: 
Murine bone marrow derived macrophages incubated for 30 minutes with Fc (C) 
or IgG2a (D). Nuclei were stained with Dapi. Images are representative of three 
separate experiments in duplicate. 
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Fc construct inhibits binding of IgG2a to murine macrophages 

To test the hypothesis that both the Fc construct and IgG2a were engaging the 

same Fc receptors, we performed an inhibition of binding assay. Macrophages 

incubated with Fc construct blocked the binding of IgG2a to the cells and IgG2a 

blocked the Fc construct from binding to the macrophages (Figure 3). Therefore, 

we concluded that these proteins were both binding to the same Fc receptors. 

 

Figure 3. Recombinant IgG2a Fc construct inhibits binding of AF647 labeled 
IgG2a and vice versa. A: Murine bone marrow derived macrophages were 
incubated for 30 minutes with recombinant IgG2a Fc construct (GFP-tagged) (5 
μg/ml) and incubated for 10 minutes with AF647 labeled IgG2a (5 μg/ml). B: 
Murine bone marrow derived macrophages were incubated for 30 minutes with 
Alexa Fluor 647 labeled IgG2a (5 μg/ml) then washed and incubated for 10 
minutes with recombinant IgG2a Fc construct (GFP-tagged) (5 μg/ml). Nuclei 
were stained with Dapi. Images are representative of three separate experiments 
in duplicate. 
 
 

Fc construct activation of RAW264.7 macrophages kills intracellular L. 

amazonensis post-infection 

Previously we have shown that activation of macrophages with soluble immune 

complexes of the IgG2a isotype, IFN- γ, and Leishmania antigen can kill the 
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intracellular parasite. This occurs through the production of superoxide, which is 

required to kill L. amazonensis.3 We hypothesized that soluble immune 

complexes were activating FcRγI leading to the production of superoxide. Since 

the Fc construct and murine IgG2a have similar morphology and binding 

characteristics, we hypothesized that they would have similar mechanisms of 

action. Macrophages were infected with L. amazonensis promastigotes for 24 

hours, then washed and treated with Fc construct and IFN-γ. The percent-

infected macrophages was significantly decreased in the Fc construct and IFN-γ 

treated cells similar to cells activated with soluble immune complexes, IFN-γ, and 

Leishmania antigen (Figure 4). 
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Figure 4. Recombinant IgG2a Fc construct activation of macrophages kills L. 
amazonensis within infected RAW 264.7 macrophages post-infection. 
Macrophages were infected with L. amazonensis promastigotes for 24 hours 
then cells were washed and treated for 24 hours. Treatments included 
biotinylated Fc-construct (Fc-biotin) (5 μg/ml) with IFN- γ (5 ng/ml), biotinylated 
Fc-construct bound to streptavidin (Fc-biotin-streptavidin) (5 μg/ml) with IFN- γ (5 
ng/ml), Fc-construct (Fc) (5 μg/ml) with IFN-γ (5 ng/ml), soluble immune 
complexes (IC) (10 μg/ml) with IFN-γ (5 ng/ml) (G) and Leishmania antigen (50 
μg/ml (A), no treatment, or streptavidin alone (5 μg/ml). The percent-infected 
macrophages were determined via light microscopy. Results are pooled data 
from 4 separate experiments.  
 
Macrophages incubated with Fc construct upregulate superoxide production 

Since we know that soluble immune complexes upregulate superoxide, we 

wanted to demonstrate that the Fc construct would act in a similar manner.3 We 

have demonstrated that the constructs are able to produce similar activation of 

macrophages to reduce the parasite load, we hypothesized that these Fc 
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constructs are inducing superoxide production in order to kill the intracellular 

parasites, similar to soluble immune complexes. L. amazonensis infected murine 

macrophages incubated with Fc construct increased superoxide production 

compared to untreated L. amazonensis infected cells (Figure 5).  

 

 

 

Figure 5. Fc constructs increase superoxide production. A and B: RAW 264.7 
macrophages infected with L. amazonensis incubated for 24 hours with 
biotinylated recombinant IgG2a Fc construct bound to streptavidin and IFN-γ (A) 
or with streptavidin and IFN-γ (B). C and D: Uninfected RAW 264.7 macrophages 
were incubated for 12 (C) and 24 (D) hours with Fc-construct. Nuclei were 
stained with Dapi. Superoxide was visualized with confocal microscopy utilizing 
CellROX (Life Technologies). 

C D
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Recombinant murine IgG2a Fc construct produced a peak of superoxide 

production at 2 hours post treatment. Biotinylated Fc construct bound to 

streptavidin had a peak of superoxide production at 1 hour post treatment and 

remained elevated compared to other groups at 12 hours post treatment (Figure 

6). These differed from the peak of soluble immune complex superoxide 

production, which occurred at approximately 12 hours post treatment (data not 

shown).  

 

 

Figure 6. Biotinylated recombinant IgG2a Fc activated superoxide production at 
approximately 1 hour post activation in RAW 264.7 macrophages with a greater 
intensity than Fc dimers and Fc coated beads, this remained elevated at 12 
hours post treatment. RAW 264.7 cells were activated with biotinylated 
recombinant IgG2a Fc construct and IFN-γ, Fc-construct and IFN-γ, or Fc-
construct coated beads and IFN-γ. Nuclei were stained with Dapi. Superoxide 
production was measured with confocal microscopy using CellROX (Life 
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Technologies) and pixel intensity was measured with Image J. The data is pooled 
from two separate experiments 
 

Inhibition of endocytosis blocks the uptake of soluble immune complexes and Fc 

construct 

Since the non-specific immune complexes required in our system to activate 

macrophages are small and soluble, we hypothesized that these soluble immune 

complexes and the Fc construct with similar morphology were taken up via 

endocytosis. To test this hypothesis we incubated cells with inhibitors of 

endocytosis or phagocytosis, Dynasore and Cytochalasin D, respectively. 

Preliminary results revealed that Dynasore blocked the uptake of Fc construct 

and soluble immune complexes when visualized with confocal microscopy. 

Cytochalasin D, an inhibitor of phagocytosis, did not block the uptake of Fc 

construct or soluble immune complexes (data not shown).  

 

Discussion 

Here we have described the production of a recombinant murine Fc construct 

with homologous morphology to murine IgG2a Fc. These constructs can be 

produced by the transfection of HEK293F cells and protein purification. This 

allows for larger scale of  production of a purified protein product that can be 

strategically analyzed and manipulated as needed. The ability to develop 

recombinant proteins can have many potential uses in the manipulation of the 

immune response. However, more research is needed to understand the 

molecular mechanisms involved in the activation of these specific intracellular 
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events. The production of such products could lead to the development of new 

therapeutic strategies by targeting receptors that have a known therapeutic 

response or those whose actions are newly being discovered  

Intracellular infections can occur due to numerous chronic infectious 

diseases and their resolution is often complex and requires a robust CD4+ Th1, 

cell-mediated immune response. This type of immune response is characterized 

by the production of IFN-γ and often superoxide. Activating an infected cell to 

undergo a Th1 immune response with the production of IFN-γ and superoxide 

can lead to clearance of the intracellular infection.  

We only saw killing of the parasite with the addition of Fc-constructs rather 

than with biotinylated Fc or streptavidin bound biotinylated Fc. This may be due 

to the fact that these constructs will form soluble multimers, which may lead to 

the clustering of the Fc receptors and the induction of prolonged superoxide 

production. In contrast biotinylation or streptavidin binding of the biotinylated Fc 

may lead to large aggregates and subsequent phagocytosis interfering with 

uptake of these particles by endocytosis and the production of prolonged 

superoxide production. 

In this study we have shown that not only can this recombinant Fc 

construct be produced, but it also has similar functions in activating the 

macrophages as compared to murine IgG2a. The Fc construct can bind to 

murine macrophages in vitro and elicit the activation of the macrophages through 

the production of superoxide and killing intracellular L. amazonensis.  
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CHAPTER 5  
 

GENERAL CONCLUSIONS 
 

Summary 

The work presented in this dissertation demonstrates the ability to activate 

macrophages in vitro with soluble immune complexes, IFN-γ, and Leishmania 

antigen in order to kill intracellular Leishmania amazonensis in an established 

infection. This describes a novel mechanism in which antibodies can be used for 

immune modulation to kill parasites. A major component of the tripartite 

activation is the production of soluble immune complexes. Our findings show the 

importance of a B cell response in this model. In our first studies we attempted to 

knock down B cells for a model of B cell deficient leishmaniasis. However, our 

findings indicated that despite depletion of B cells with anti-CD20 C3H mice are 

still able to resolve cutaneous lesions due to a coinfection with L. major and L. 

amazonensis and an antibody response persisted (or vice versa).  

We were also able to determine important immune factors that were 

involved during the tripartite activation, which led to the clearance of the parasite 

via an upregulation of autophagy, seen as LC3 colocalization. We showed that 

the tripartite activation of macrophages led to a significant increase in superoxide 

production, which we know is an important factor in killing L. amazonensis. This 

upregulation of superoxide is maintained over 12 hours, which is much longer 

than other studies have found with superoxide production. We were also able to 

determine that the activation of superoxide production was related to the 

upregulation of autophagy through the colocalization of LC3 with parasites within 
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parasitophorous vacuoles. It has been previously demonstrated that this tripartite 

activation depended upon activation of the FcRγ (fragment crystallizable) 

common-chain and NADPH (nicotinamide adenine dinucleotide phosphate) 

oxidase-generated superoxide and here we show a requirement for the protein 

kinase C (PKC) δ pathway. We hypothesize that the stimulation of the FcRγ and 

a C-type lectin receptor activate spleen tyrosine kinase (Syk) and proto-

oncogene tyrosine protein kinase (Src) pathways, which lead to NADPH oxidase 

production and the formation of diacylglycerol (DAG) on Leishmania containing 

parasitophorous vacuoles. DAG then recruits PKCδ to the parasitophorous 

vacuole, which can lead to the activation of autophagy. (Figure 1) There are 

three different pathways that lead to the formation of DAG. 1) Phospholipase D 

(PLD) converts phosphatidylcholine (PC) to phosphatidic acid (PA), which is then 

converted to DAG by phosphatidic acid phosphatase (PAP); 2) 

Phosphatidylinositol bisphosphate (PIP2) is converted to DAG by phospholipase 

C (PLC); 3) sphingomyelin synthase (SMS) converts phosphatidylcholine (PC) to 

DAG. We hypothesize that in our system, DAG is formed through the conversion 

of phosphatidic acid to DAG by a phosphatidic acid phosphatase enzyme. This 

would be similar to the antibacterial autophagy pathway shown by Shahnazari et 

al.1  
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Figure 1. Hypothesized signaling pathway for macrophages infected with 
Leishmania amazonensis (LA) and activated with soluble immune complexes, 
IFN-γ, and Leishmania antigen. This pathway leads to the killing of the 
intracellular parasite by signaling through NADPH oxidase and non-canonical 
autophagy pathways, along with a yet unknown c-type lectin receptor (likely 
Dectin-1). phosphatidic acid (PA), phospholipase D (PLD2) See text for other 
abbreviations. 

 

Finally, we demonstrated that a recombinant murine IgG2a Fc construct 

may be able to replace the use of non-specific soluble immune complexes in our 

system. These Fc constructs can be developed in large quantities of a purified 

product or other engineering opportunities, such as different glycosylation 

patterns. These constructs can then be used to manipulate the immune response 

to promote killing of an intracellular pathogen. Our results demonstrated that 

these constructs are likely taken up via endocytosis and can induce the 

macrophages to produce superoxide after being taken up by the FcRγI.   
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Recommendations for future studies 

An important goal for future studies is to elucidate the specific signaling pathways 

that are involved in the tripartite activation of macrophages and the clearance of 

the intracellular parasites. This would include the important receptors required for 

activation of the coincidence receptor system. We currently know that the FcRγ 

common chain and IFN-γ receptor are important in this system but we are 

uncertain as to the 3rd receptor that is required for the tripartite activation. We 

hypothesize that a C-type lectin receptor is the 3rd receptor required and 

determining the specific receptor is an important step in future studies in order to 

be able to use specific targets or to further the development of a therapeutic. 

Numerous studies link the Dectin-1 receptor to the production of superoxide and 

the use of Dectin-1 knockout mice would help to elucidate whether this receptor 

plays an integral role in the tripartite activation and killing of Leishmania.  

While we have determined that the autophagy pathway involved is 

mediated through the PKCδ pathway, it would again be essential to determine 

which other molecules are involved in this autophagy pathway, specifically 

determining how DAG is activated. The use of PLC, SMS, or PAP inhibitors 

would help determine which pathway is leading to the formation of DAG in our 
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system. Appropriate knock out models and cell lines with transfected GFP-LC3 

would also be crucial in determining these pathways. 

Other future studies that could be performed would include testing the tripartite 

activation of macrophages on other intracellular pathogens such as Salmonella, 

Rhodococcus, Brucella, and Mycobacterium, along with many others. The 

activation of macrophages to induce killing of intracellular pathogens could be a 

novel way to decrease infections without the use of antibiotics, which essentially 

could decrease antibiotic use and the development of antibiotic resistance. 

Another important goal of this research would be to determine the 

mechanisms of activation of the Fc constructs and determine why they produce 

different results than the soluble immune complexes in certain circumstances, 

such as superoxide production. It would be important to characterize the 

structure of the Fc constructs and whether or not they are present in dimers or 

larger constructs. Our findings showed that the superoxide production that was 

due to Fc constructs occurred much earlier than the soluble immune complexes. 

The explanation of these differences would require further experiments with 

purified Fc constructs. 
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